
ACM/CMS 107 Linear Analysis & Applications Fall 2016

Assignment 3: Lax-Milgram and PDEs Due: 17th November 2016

Introduction

In this assignment we consider the boundary value problem

− d

dx

(
κ(x)

dp

dx
(x)

)
= f(x) for x ∈ (0, 1)

p(0) = p(1) = 0.

(PDE)

The concept of a weak solution to this equation will be introduced, and an existence
and uniqueness result will be shown. We will then consider how the equation may be
implemented numerically, using a finite element method, and study some properties of
this discretization.

This equation has a natural extension to more general domains D ⊆ R3, given by

−∇ ·
(
κ(x)∇p(x)

)
= f(x) for x ∈ D

p(x) = 0 for x ∈ ∂D

where now κ : D → R3×3 is matrix-valued. The theory we look at generalizes to this
case directly, and it is in this case where the weak solutions and finite element methods
become key tools for understanding. The equation itself arises, for example, when con-
sidering groundwater flow, with κ representing the permeability of the subsurface and p
the pressure of a fluid in the subsurface. Matrix-valued κ is considered to account for
the permeability of a medium being dependent on direction. The equation is arrived
at by combining Darcy’s law with a conservation law. The equation also arises in elec-
trodynamics: if an electric field E is conservative, then the equation follows from the
steady state Maxwell equations, with κ representing the background conductivity and p
representing the electric potential corresponding to E.

For exposition we work in this assignment only with the one-dimensional case D = (0, 1)
given by (PDE). This allows for the general theory and ideas to be introduced, without
having to deal with certain technicalities. Moreover, computations in this case are much
less expensive than in higher dimensions.

Throughout this assignment we will make the following assumptions about (PDE):

Assumptions 1. The diffusion coefficient κ : (0, 1)→ R and source term f : (0, 1)→ R
are such that:

(i) there exist κ0, κ1 > 0 with κ0 ≤ κ(x) ≤ κ1 for all x ∈ (0, 1);

(ii) f ∈ L2(0, 1).

Problem 1. Weak Solutions (30 points)

(a) Denote by C∞c (0, 1) the set of compactly supported smooth functions on the open
interval (0, 1). That is,

C∞c (0, 1) =

{
ϕ ∈ C∞(0, 1)

∣∣∣∣ there exists a closed bounded set K ⊂ (0, 1)

with ϕ(x) = 0 for all x /∈ K

}
.



(i) Let ϕ ∈ C∞c (0, 1). Show that

lim
x↓0

ϕ(x) = lim
x↑1

ϕ(x) = 0.

(ii) Let p be a solution to (PDE). Show that∫ 1

0
κ(x)

dp

dx
(x)

dϕ

dx
(x) dx =

∫ 1

0
f(x)ϕ(x) dx for any ϕ ∈ C∞c (0, 1).

Do not solve (PDE) explicitly.

(b) Define the H1
0 norm and inner product on C∞c (0, 1) by

‖ϕ‖2H1
0

=

∫ 1

0

∣∣∣∣dϕdx
(x)

∣∣∣∣2 dx, 〈ϕ,ψ〉H1
0

=

∫ 1

0

dϕ

dx
(x)

dψ

dx
(x) dx.

Define the space H1
0 (0, 1) to be the closure of C∞c (0, 1) with respect to the H1

0 norm,
that is,

H1
0 (0, 1) = {v : (0, 1)→ R | there exists {ϕn} ⊂ C∞c (0, 1) with ‖ϕn − v‖H1

0
→ 0}.

We will assume in the remainder of what follows that any v ∈ H1
0 (0, 1) is once

differentiable at almost every point in (0, 1); in particular the derivative of v is well-
defined whenever it appears under an integral sign. Additionally we will assume that
H1

0 (0, 1) is a Hilbert space when equipped with the inner product 〈·, ·〉H1
0

defined
above.

Remark 1. You will have encountered the space H1
0 (0, 1) in a problem set, though

it was defined differently. The two definitions can be shown to be equivalent, but in
this assignment we will work only with the definition above.

(i) Prove the Poincaré inequality: for any v ∈ H1
0 (0, 1),∫ 1

0
|v(x)|2 dx ≤

∫ 1

0

∣∣∣∣dvdx
(x)

∣∣∣∣2 dx.

Deduce that H1
0 (0, 1) is continuously embedded in L2(0, 1).

(ii) Let Assumptions 1 hold, and let p be a solution to (PDE). Using Problem
1(a)(ii) and the Poincaré inequality, show that∫ 1

0
κ(x)

dp

dx
(x)

dv

dx
(x) dx =

∫ 1

0
f(x)v(x) dx for all v ∈ H1

0 (0, 1). (WPDE)

In what follows, we will call any function p ∈ H1
0 (0, 1) that satisfies (WPDE) a weak

solution to (PDE), and any function that solves (PDE) in the classical sense a strong
solution to (PDE). Note that if it exists, a strong solution is a weak solution.

(c) Denote V = H1
0 (0, 1). Define B : V × V → R, g : V → R by

B(u, v) =

∫ 1

0
κ(x)

du

dx
(x)

dv

dx
(x) dx, g(v) =

∫ 1

0
f(x)v(x) dx. (1)

Then we may rewrite (WPDE) in the form

B(p, v) = g(v) for all v ∈ V .

Using the Lax-Milgram lemma, prove that there exists a unique weak solution p ∈ V
to (PDE).



Problem 2. Finite Element Approximations (30 points)

If we wish to solve (WPDE) numerically, we will first need to make a finite dimensional
approximation to the system, which will then provide a finite dimensional approximation
to the solution. In this problem we consider a class of approximations known as finite
element approximations.

Let V h ⊆ V be a finite dimensional subspace of V , with basis {ϕhj }
Nh
j=1. The scalar

parameter h > 0 will be related to the dimension of V h, with Nh ↑ ∞ as h ↓ 0. It is this
space V h in which we will look for an approximate solution.

(a) (i) Equip V h with the inner product 〈·, ·〉H1
0
. Show that V h is a Hilbert space.

(ii) Let B : V h× V h → R, g : V h → R denote the restrictions of B, g to V h, where
B, g are defined by (1). Using the Lax-Milgram lemma, show that there exists
a unique solution ph ∈ V h to the problem

B(ph, vh) = g(vh) for all vh ∈ V h. (WPDE-h)

(iii) Let ph ∈ V h be the unique solution to (WPDE-h). Since ϕh1 , . . . , ϕ
h
Nh

form a

basis for V h, there exist scalars P h1 , . . . , P
h
Nh
∈ R such that

ph =

Nh∑
j=1

P hj ϕ
h
j .

Find expressions for the entries of a matrix Ah ∈ RNh×Nh and a vector F h ∈
RNh such that the coefficients P h = (P h1 , . . . , P

h
Nh

)> ∈ RNh solve

AhP h = F h. (FEM)

(iv) Define the inner product 〈·, ·〉B on V by 〈u, v〉B = B(u, v). Show that the
induced norm ‖ · ‖B is equivalent to ‖ · ‖H1

0
.

(v) Let p ∈ V, ph ∈ V h be the unique solutions to (WPDE) and (WPDE-h) respec-
tively. Establish the Galerkin orthogonality :〈

p− ph, vh
〉
B

= 0 for all vh ∈ V h.

Using this, show that

‖p− ph‖B ≤ ‖p− vh‖B for all vh ∈ V h

and hence
‖p− ph‖H1

0
≤ κ1
κ0
· inf
vh∈V h

‖p− vh‖H1
0
.

The first inequality above is the Galerkin optimality property, namely that ph

is optimal over all possible approximations in V h with respect to the norm
induced by B.



(b) We now look at a particular choice of approximation space V h. Let h ∈ (0, 1/2) and
set Nh = b1/hc − 1 ∈ N. Define the mesh

xh = {0, h, 2h, 3h, . . . , Nhh, (Nh + 1)h} ⊂ [0, 1].

We will denote xhj = jh for each j = 0, . . . , Nh + 1. The points xhj will be referred

to as nodes and the intervals (xhj , x
h
j+1) as elements.

Define the set of functions {ϕhj } ⊆ H1
0 (0, 1) by

ϕhj (x) =


x−xhj−1

xhj−xhj−1

x ∈ (xhj−1, x
h
j ]

xhj+1−x
xhj+1−xhj

x ∈ (xhj , x
h
j+1]

0 x /∈ (xhj−1, x
h
j+1]

for each j = 1, . . . , Nh. Define the finite element space

V h = span{ϕh1 , . . . , ϕhNh
} ⊂ H1

0 (0, 1).

(i) Draw the graphs of each {ϕhj } for h = 1/5.

(ii) Show that ϕh1 , . . . , ϕ
h
Nh

form a basis for V h. Are they an orthonormal basis?

(iii) Given a function b ∈ V , describe the function bh ∈ V h given by

bh(x) =

Nh∑
j=1

b(xhj )ϕhj (x).

(iv) Observe that ϕhj and ϕhk have disjoint supports if |j − k| > 1. Given that this

is the case, what structure should the matrix Ah in (FEM) have?

(v) Implement the system (FEM) in MATLAB, with the terms κ and f provided as
function handles. That is, given h > 0 and function handles for κ, f , construct
Ah and F h, and return the vector of coefficients P h. It will be beneficial to
implement P h as a sparse matrix, using the sparse function in MATLAB.

For integration over elements, use the integral function in MATLAB, sup-
plying relative and absolute tolerances of 10−14. We choose these tolerances
close to machine precision so that the errors in the integration will be domi-
nated by the errors that arise from the finite element approximation.

Consider the case
κ(x) = ex, f(x) = 4ex(2x+ 1).

It can be shown that the exact solution is given by the quadratic

p(x) = 1− (2x− 1)2.

Test your implementation in this case by verifying that

P hj ≈ p(xhj ), j = 1, . . . , Nh

for h = 2−10. Construct ph on the mesh xh using the coefficients P h, and
produce a plot on logarithmic axes of the error function eh(x) = |ph(x)−p(x)|.



Remark 2. The definitions we give of the basis {ϕhj } can be simplified for the mesh

xh that we work with. Note however that the definition makes sense for more general,
non-uniform meshes, and the above still applies directly in those cases. Such meshes
may be more appropriate to use if either κ or f have strong local behavior that needs
to be captured.

Problem 3. Solution via Quadrature (20 points)

As we are in one dimension, we can solve (PDE) directly by hand. This allows us to
implement a reference solution against which the finite element approximations can be
compared.

(a) Assume that f(x) = F ′(x) for some F : [0, 1] → R. By integrating (PDE) twice,
show that the solution to (PDE) is given by

p(x) = −
∫ x

0

F (y)

κ(y)
dy +

∫ 1

0

F (y)

κ(y)
dy

(∫ 1

0

1

κ(y)
dy

)−1 ∫ x

0

1

κ(y)
dy.

(b) Fix h = h∗ := 2−14. Using the integral function in MATLAB, implement the
solution p of (PDE) in MATLAB on the mesh xh, using the above expression. When
calling integral, supply relative and absolute tolerances of 10−14. As for the finite
element case, the terms κ and f should be provided as function handles.

Test your implementation using the same κ and f as used when testing the finite
element method, noting that f(x) = F ′(x) where F (x) = 4ex(2x − 1). Produce a
plot on logarithmic axes of the error function for this approximation.

Problem 4. Convergence rates (20 points)

We now study the rates of convergence of the finite element approximations as h → 0,
i.e. as the number of basis elements increases. Throughout this question, we fix

κ(x) = 1.1 + sin(25x2), f(x) = cos(x).

We saw in Problem 2(v) that the error between the true solution and the finite element
approximation satisfies the following bound in the H1

0 (0, 1) norm:

‖p− ph‖H1
0
≤ κ1
κ0
· inf
vh∈V h

‖p− vh‖H1
0
.

Choosing vh to be the piecewise linear interpolant of the true solution p at the mesh
points, which belongs to V h, it is known that there exists a constant C(p) > 0 such that

‖p− vh‖H1
0
≤ C(p)h.

We can hence deduce that the convergence of ph to p as h → 0 is at least linearly fast
in the H1

0 (0, 1) norm. We will see how this compares with numerical experiments, and
also look at convergence in the L2(0, 1) norm.



(a) Denote by p∗ the solution to (PDE) using the implementation from Problem 3(b).
Define hk := 2−k. Compute the coefficients P hk of the finite element approximation
phk for k = 4, . . . , 12. Construct each phk on the mesh xh∗ using these coefficients,
then calculate and store the H1

0 and L2 errors,

ek = ‖p∗ − phk‖H1
0
, e′k = ‖p∗ − phk‖L2 ,

using the integral, gradient and interp1 functions in MATLAB. It may also
be beneficial to run format long to increase the number of decimal places in the
output. Present these errors in a table.

(b) Given a norm ‖ · ‖ and h, h′ > 0, we define the experimental order of convergence
(EOC) with respect to ‖ · ‖ by

EOC(h, h′) =
log
(
‖p− ph‖/‖p− ph′‖

)
log(h/h′)

.

(i) Explain why if the convergence if of the form

‖p− ph‖ ≈ Chα,

then EOC(h, h′) provides an estimate for α.

(ii) For each of the H1
0 and L2 norms, compute EOC(hk, hk+1) for k = 4, . . . , 11

using the stored values of ek, e
′
k, and present these values in a table. How do the

experimental rates of convergence in the H1
0 norm compare with the theoretical

bound above? What do you think the theoretical rate of convergence in the L2

norm is?

Remark 3. Faster rates of convergence can be attained by choosing a different family
of finite element basis functions {ϕhj }. Rather than being piecewise linear, they can be
chosen to be piecewise quadratic, piecewise cubic, and so on. These basis functions have
a larger support than the piecewise linear basis functions, and so the matrix P h becomes
less sparse. Thus there is an increase in, for example, memory requirements, in exchange
for the higher rate of convergence.


