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Abstract

Many inverse problems involve the estimation of a high dimensional quantity, such as
a function, from noisy indirect measurements. These problems have received much
study from both classical and statistical directions, with each approach having its
own advantages and disadvantages. In this thesis we focus on the Bayesian approach,
in which all uncertainty is modelled probabilistically.

Recently the Bayesian approach to inversion has been developed in function space.
Much of the existing work in the area has been focused on the case when the prior
distribution produces samples which are continuous functions, however it is of in-
terest, both in terms of applications and mathematically, to consider cases when
these samples are discontinuous. Natural applications are those in which we wish
to infer the shape and locations of interfaces between different materials, such as in
tomography.

In this thesis we consider Bayesian inverse problems in which the unknown function
is piecewise continuous or piecewise constant. Based on prior information, the prob-
lem is then to infer the discontinuity set, the values the function takes away from the
discontinuities, or both simultaneously. These problems are considered both from
analytic and computational points of view. In order to ensure numerical robustness,
we formulate any algorithms directly on function space before discretizing. This
requires a number of technical issues to be considered, such as the equivalence and
singularity of measures on such spaces.
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Chapter 1

Introduction

In section 1.1 we describe what is meant by an inverse problem, and provide some

examples of challenges associated with the solution of such problems. In subsection

1.1.1 we give an overview of some classical approaches to overcome these challenges,

first in the linear finite-dimensional case, and then more general cases. In subsection

1.1.2 we then describe the modern Bayesian approach to inverse problems, where

the solution is now a probability measure, rather than a state or set of states. In

section 1.2 an outline of the content of the thesis is given, with a brief overview of

the results in each chapter.

1.1 Overview

Inverse problems arise in many scientific disciplines, from geophysics and oceanog-

raphy, to non-destructive testing and machine learning. The objective of such prob-

lems is typically to recover a function or other high-dimensional quantity from a

number of indirect measurements. This function could for example represent the

permeability of the subsurface in geophysical applications, or the internal struc-

ture of a body in medical applications. Such problems in these areas have been of

significant interest in recent years; their effective resolution is of both fundamen-

tal scientific interest, as well as having potential economic value. As an example,

consider the recovery of the subsurface structure of a petroleum reservoir from mea-

surements such as flow data in a well, water table height or seismic reflection data.

The measurements are highly indirect, yet knowledge of the subsurface is crucial for

making significant financial decisions, such as choosing the optimal location for an
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oil well to be constructed. In a medical context, data could arise via X-ray measure-

ments or some other tomographic method. Decisions made based on the analysis of

this data could include how to or whether to intervene surgically.

A common theme in many of these applications is that the data is not complete – it

cannot uniquely determine the unknown quantity. In this case, the problem could

be represented in terms of an equation of the form

y = G(u) (1.1.1)

where G : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is a (often non-linear, non-invertible) mapping

between two Banach spaces, termed the forward map. In this equation u ∈ X repre-

sents the unknown input to be determined from a number of (frequently noisy and

indirect) measurements, and y ∈ Y represents the observed data. In applications,

the forward map is typically formed by composing a forward model with an obser-

vation map. The forward model could for example involve the solution of a partial

differential equation related to a physical system, given some input u, and the ob-

servation map could take this solution to its values y at a discrete set of observation

points.

Another theme is that there may be significant noise on measurements, meaning

that even if there is enough data, it may not be consistent with both the physical

model and itself. In this case the observations may, for example, take the form

y = G(u) + η (1.1.2)

where η is a realization of some random noise. Physically this could correspond

to measurement instruments having only finite precision, or might be included to

account for differences between the computer model and physical reality [78]. Often

this noise will be assumed Gaussian, though other distributions are not uncommon

depending on the context [59,103].

Uncertainty in inverse problems hence typically exists both due to missing data

and noise on measurements. These problems are usually ill-posed in the sense of

Hadamard [60]: there may be no solution, there may be no unique solution, or the

solution may not depend continuously on the input. In the next subsection we will

outline some popular classical approaches that have been used to provide a notion of

solution to problems of the form (1.1.1) and (1.1.2). We will then give an overview of

the Bayesian approach to inversion, which permits quantification of the uncertainty

in the unknown, and its propagation to uncertainty in quantities of interest.
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1.1.1 Classical Approaches to Inversion

In order to remove or reduce the effects of ill-posedness from an inverse problem,

one could attempt to modify the problem in an appropriate manner, or modify

what is meant by a solution to the problem. Well-studied techniques for doing

so include variational regularization approaches, truncation of spectral decomposi-

tions, definition of notions of quasisolutions, and contruction of dynamical systems

with suitable ergodic properties. Such techniques have been considered for a large

variety of problems, including inverse spectral problems [46, 110, 140], inverse ob-

stacle scattering [32,81,118], tomography [29,58,120], image processing and decon-

volution [87, 88, 129], and seismic inversion [111, 113, 127]. The structure in these

problems, such as the regularity of the forward map, the dimension (or effective

dimension) of the input and the data, and the amplitude of the noise, can have a

strong effect on what technique is appropriate and how effectively the input can be

recovered.

In order to illustrate the technologies available, we will first outline least-squares

based methods for linear forward maps on finite dimensional spaces, before dis-

cussing methods for more general maps.

Let X and Y be finite dimensional Hilbert spaces, and let the forward map A : X →
Y be linear so that the data y now arises via

y = Au.

Assuming that A is not invertible, an alternative way of characterizing solutions to

this problem is in the least-squares sense. Denote by Φ : X → R the least-squares

functional associated with this problem,

Φ(v) :=
1

2
‖Av − y‖2Y ,

and denote by U ⊆ X the set of minimizers of Φ. Since Φ is smooth and convex,

we can characterize U by for example checking first- and second-order optimality

constraints. That is v ∈ U if and only if Φ′(v) = 0 and Φ′′(v) is non-negative definite.

We calculate

Φ′(v) = A∗Av −A∗y, Φ′′(v) = A∗A

and deduce that v ∈ U if and only if it satisfies the normal equations:

A∗Av = A∗y. (1.1.3)

3



However, unless A∗A is invertible, this system will admit an infinity of solutions.

Consider the case when X = Rn and Y = Rm are Euclidean spaces and A ∈ Rm×n.

Suppose first that m ≥ n so that the system is overdetermined, and rank(A) = n.

Then all of the singular values of A are strictly positive, hence the same is true of

the eigenvalues of A∗A: there exists a unique solution to (1.1.3). If instead we have

m < n and rank(A) = m, then rank(A∗A) = m < n and so there exist infinitely

many solutions to (1.1.3). In general, we have infinitely many solutions whenever

rank(A) < min{m,n}, so that rank(A∗A) = rank(A) < n. In all cases there exists

at least one solution – this could also be seen by noting that Φ is continuous and

coercive.

Even when we are in the case that there exists a unique solution, the behavior of this

solution with respect to perturbations in the data y may be poor. If A admits the

singular value decomposition A = UΣV ∗, then it can be checked that the solution

is given by

u = V Σ−1U∗y (1.1.4)

where Σ−1 ∈ Rn×m is given by (Σ−1)ii = 1/Σii for i = 1, . . . , n and (Σ−1)ij = 0

otherwise. Hence if any of the singular values Σii of A are close to zero, small

changes in y can lead to large changes in u.

Typically there will be an infinite number of solutions to (1.1.3), and so it may be

preferable to pick out a particular solution u with certain properties. For example,

it may be of interest to to choose the solution u0 ∈ U whose norm in X is minimal,

that is,

u0 = argmin
v∈U

1

2
‖v‖2X . (1.1.5)

A relaxation of this approach is to introduce a regularization parameter λ > 0, and

instead seek minimizers of the perturbed least-squares functional Jλ : X → R,

Jλ(v) := Φ(v) +
λ

2
‖v‖2X .

The parameter λ allows us to balance fitting the data with the regularity of the

solution. An advantage of the regularized approach is that we can immediately

deduce that the functional Jλ has a unique minimizer uλ ∈ X for each λ > 0, since
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the corresponding normal equations are now given by

(A∗A+ λI)v = A∗y,

and (A∗A+ λI) is always positive-definite and hence invertible. Moreover, we have

that uλ → u0 ∈ U as λ→ 0, where u0 is as defined by (1.1.5).

Returning to the Euclidean case X = Rn, Y = Rm discussed earlier, it can be

verified that instead of (1.1.4), the solution uλ to the perturbed problem may be

represented as

uλ = V Σ−1
λ U∗y

where Σ−1
λ ∈ Rn×m is given by

(Σ−1
λ )ii =

Σii

Σ2
ii + λ

for i = 1, . . . , n and (Σ−1
λ )ij = 0 otherwise. Hence by choosing λ sufficiently large,

the effect of small singular values of A on data-sensitivity of the solution can be

controlled. This is one sense in which the perturbation of the objective functional

can be thought of as a regularization of the problem.

Alternatively, returning to the general case, if one takes a subspace (E, ‖ · ‖E) em-

bedded in X, it may be of interest to penalize the norm in E rather than the norm

in X in order to promote certain properties of the solution [48], an approach com-

monly referred to as Tikhonov-Phillips regularization. Additionally, the problem

of making the optimal choice of regularization parameter λ has received signifi-

cant interest, since it is not always appropriate or efficient to consider the limit

λ→ 0 [47,54,125].

Such an approach can also be used when the data is noisy, that is

y = Au+ η.

If the noise is known to be Gaussian distributed with zero mean and covariance

Γ, i.e. η ∼ N(0,Γ), then it is natural to consider the weighted least-squares func-

tional

Φ(v) :=
1

2
‖Av − y‖2Γ :=

1

2
‖Γ− 1

2 (Av − y)‖2Y

and associated regularized functionals; this will be discussed later in the context of

Bayesian inversion. Note that if Γ is diagonal so that each component of the noise

is independent, more weight will be placed upon components with smaller amounts

5



of noise.

Other misfit functions and regularization terms have received much study [40,48,80].

In general, the spaces X,Y will be infinite-dimensional Banach spaces and G : X →
Y will not necessarily be linear. With data given by (1.1.1) or (1.1.2) it still makes

sense to formulate the problem variationally, so that solutions can be defined to be

minimizers of the functional J : X → R ∪ {∞},

J(v) = Φ(v) + λR(v). (1.1.6)

Here, Φ : X → R again represents the model-data misfit, and now R : X → R∪{∞}
is a general (typically convex) regularization term. These methods are often referred

to as Tikhonov-type or generalized Tikhonov methods. When X and Y are function

spaces, possible choices for Φ and R may include, for example,

Φ(v) =
1

p
‖G(v)− y‖pLp ,

R(v) =
1

q
‖Bv‖qLq or R(v) =

1

2
‖v‖2E or R(v) =

1

2
‖v‖TV,

for some p, q ≥ 1, some non-negative operator B, and some (E, ‖ · ‖E) compactly

embedded in X. B may for example be a differential operator, in which case the

regularity of minimizers can be controlled, or a multiple of the identity, in which

case their amplitudes can be controlled. As in the finite-dimensional linear case,

the choice of the squared E-norm as a regularization term is known as Tikhonov-

Phillips regularization [48]. The choice of the total variation (TV) regularization

term is often used when the unknown function is piecewise continuous; the TV norm

penalizes the surface area of the discontinuity set, and so over-fitting of data can be

avoided [114].

Note that due to the non-linearity in G, the minimizers of J in the case p = q = 2

do not satisfy a linear system as before. This presents issues both from analytical

and computational perspectives. Another issue is that in general Φ will not be

convex, and so more work is needed to obtain existence of minimizers of J . In these

cases there may exist multiple local minima which are not the global minimum.

These local minima may however be of interest in order to get a fuller picture of the

solution of the problem, instead of just looking at the global minimum.

Another class of approaches for solving (1.1.2) are known as residual methods [57]. In

this case, with the same notation as above, one considers the problem of minimizing

6



the regularization term R subject to the condition that the misfit Φ is not too large.

Specifically, one can look for solutions in the set

argmin
v∈X

{
R(v)

∣∣ Φ(v) ≤ δ
}

where δ is approximately the size of the data error, that is δ ≈ Φ(u†), and u† is

the true state that generates the data. Note that the calculation of δ does not in

general require knowledge of u†, only of the model: if for example Φ is given by the

least-squares functional, then we have that

Φ(u†) =
1

2
‖η‖2Y

and so we may use the distributional properties of η to estimate δ.

Finally one could consider a combination of the Tikhonov-type and residual meth-

ods. Denote by uλ the solution to (1.1.6) using regularization parameter λ. We can

look for the choice of λ such that Φ(uλ) = Φ(u†). This is a root finding problem,

and is known as Morozov’s discrepancy principle [33].

1.1.2 The Bayesian Approach to Inversion

Probability can be used to account for incomplete data and noise on the measure-

ments. The Bayesian approach treats all unknowns as random variables, and so

inference about these random variables then allows us to perform inference on the

system itself. Bayes’ formula tells us quantitatively how to marry data with prior

beliefs to produce the posterior distribution. This is a probability measure which, in

the context of inverse problems, will typically be defined on an infinite-dimensional

Banach space. Quantities of interest, for example posterior mean, variance and

modes, can then be studied under this distribution. Since the solution to the prob-

lem is now a probability measure rather than a single state, we are able to quantify

any uncertainty arising in these quantities via integration. Moreover, whilst the

classical approaches discussed in the previous subsection were somewhat ad hoc,

the Bayesian approach provides a constructive approach to regularization, especially

through the connection with MAP estimators elaborated below.

The following are the main components in the Bayesian approach:

1. Prior distribution. A probability measure on X that describes our beliefs

about the solution to the inverse problem before any data has been collected.

7



We typically denote this by µ0.

2. Likelihood. A function L representing how likely data is to have arisen from a

given state u, i.e. the conditional density of y given u. We will typically write

this in the form

L(y;u) = exp(−Φ(u; y)).

3. Posterior distribution. A probability measure on X that arises by combining

the prior distribution and likelihood using Bayes’ theorem, representing the

conditional distribution of u given the data y. Denoting this measure by µy,

it is given by

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)) (1.1.7)

where Z(y) is the normalization constant.

The posterior distribution µy is the solution to the Bayesian inverse problem. Once

we have this, many questions may arise. For example:

(i) How sensitive is the posterior distribution to perturbations of the data? How

about the choice of prior distribution?

(ii) If the forward model isn’t perfect, either mathematically or computationally,

what effect will this have?

(iii) How can we sample the posterior numerically, and ensure that sampling effi-

ciency does not decay as any approximation meshes are refined?

Such questions are addressed in generality in the lecture notes [39] and the references

therein. The sensitivity in (i) and (ii) is typically characterized with respect to the

Hellinger metric, which leads to error bounds on expectations of different quantities.

Question (iii) is addressed by formulating any sampling algorithms on function space

before any discretization, and showing such algorithms are well-defined.

The Bayesian and classical approaches to inversion may be related via the modes of

the posterior distribution, termed MAP estimators. If the posterior distribution µy

admits a Lebesgue density, so that it can be written

dµy

du
(u) ∝ exp(−J(u)),

then a MAP estimator for µy is defined as a maximizer of this density, or equivalenty

a minimizer of the functional J . Determination of MAP estimators is hence a

8



variational problem, and the choice of prior distribution is akin to the choice of

regularization term in the classical approaches discussed earlier. In general there

will not exist a Lebesgue density, however the definition of MAP estimators may

be extended to this case. In [38] the authors provide a definition involving ratios of

measures of balls of diminishing size, in such a way that it agrees with the standard

definition when Lebesgue densities exist. Later on we will see a direct relation

between MAP estimation and Tikhonov-Phillips regularized minimization, in the

case of Gaussian observations and Gaussian priors, proved in [38].

An overview of the area of statistical, and in particular, Bayesian approaches to

inverse problems is provided in the text [75], with a strong focus on cases where

Lebesgue densities exist. This is often the case if, for example, the forward map is

assumed to be defined on a finite element space rather than an infinite dimensional

function space. Many computational issues are also discussed therein, related to ap-

proximation of integrals of quantities of interest against the posterior distribution.

Markov Chain Monte Carlo (MCMC) methods are commonly used in practice, which

produce Markov chains whose states, in stationarity, are drawn from the posterior.

These states can then be used to approximate integrals via Monte Carlo approxi-

mation. MCMC techniques typically require many evaluations of the likelihood to

produce accurate approximations of quantities of interest, due to strong correlations

between states. One is often therefore interested in how the posterior distribution

could be approximated by sampling simpler distributions, such as a Gaussians, since

these may be sampled much more cheaply. Possible approximations that have been

considered previously include linearization around the MAP [113], randomized max-

imum likelihood [112] and ensemble Kalman filtering [1]. A comparison of these

approximations in the context of reservoir simulation is provided in [70].

As in the classical case, the situation when the forward map is linear and defined on

finite dimensional spaces can be easier to analyze. Let X,Y be finite dimensional

Hilbert spaces and let A : X → Y denote the forward map. Take a Gaussian prior

µ0 = N(m0, C0) on u, and assume the noise has a Gaussian distribution η ∼ N(0,Γ).

Then the posterior is again Gaussian, with mean m and covariance C given by

C = (A∗Γ−1A+ C0)−1,

m = C(A∗Γ−1y + C−1
0 m0).

The matrix A∗Γ−1A is the Fisher information associated with the likelihood. Since

this is positive semi-definite, the posterior covariance is ‘smaller’ in some sense
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than the prior covariance. If the Fisher information is zero, then any data will be

uninformative and the posterior equals the prior. On the other hand, as the size

of the Fisher information increases, the posterior variance contracts to zero and

the posterior mean converges to the true state that generates the data – this is an

example of what is termed posterior consistency [30].

Note that the posterior mean is the unique minimizer of the functional

J(v) =
1

2
‖Av − y‖2Γ +

1

2
‖C−

1
2

0 (v −m0)‖2X (1.1.8)

and thus there exists a clear link between classical and Bayesian approaches in the

linear Gaussian case. Note also that the posterior Lebesgue density is given by

dµy

du
(u) ∝ exp(−J(u)).

This is maximized whenever J is minimized, and so the posterior mean is the unique

MAP estimator in this case.

The non-linear non-parametric case can be significantly more difficult to analyze.

The lecture notes [39] provide an overview of many areas associated with such prob-

lems. Posterior consistency results have been obtained in, for example, [4, 5, 38].

It is this setting that is considered throughout the majority of this thesis. One of

the main obstacles with the non-parametric approach is the the lack of existence

of a Lebesgue measure on the space X, and so absolute continuity between mea-

sures becomes a much more central property. In particular, the absolute continuity

(1.1.7) of the posterior with respect to the prior means that any almost sure prop-

erties of the prior, such as sample regularity, are also almost sure properties of the

posterior.

In [38] the authors provide the following result regarding MAP estimators in the

non-linear non-parametric case. Suppose that the prior µ0 is chosen to be Gaussian1

with associated Cameron-Martin space (E, ‖·‖E) compactly embedded in (X, ‖·‖X).

Then under appropriate conditions on the forward map G, MAP estimators are

shown to be equivalent to minimizers of the functional J : X → R ∪ {∞} given

by

J(v) =
1

2
‖G(v)− y‖2Γ +

1

2
‖v −m0‖2E

for v − m0 ∈ E, and infinity otherwise. A link between Bayesian and classical

inversion techniques is hence again evident. Note also that in the case that X is a

1The definition of a Gaussian measure on a Banach space may be found in the appendix.
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separable Hilbert space and the prior covariance C0 is strictly positive, the Cameron-

Martin space takes the form (E, ‖ · ‖E) = (C1/2
0 X, ‖C−1/2

0 · ‖X), and so J takes the

same form as (1.1.8) whenever it is finite. In general, however, minimizers of J will

not coincide with the posterior mean due to the non-linearity of G.

1.2 Outline of the Thesis

The recent development of Bayesian inversion on function space described in the

previous section is focused predominantly on cases where fields sampled from the

prior distribution (and hence posterior distribution) are almost surely continuous.

There are however many applications where the unknown field is expected, or known

a priori, to be discontinuous. This includes for example applications in subsur-

face and medical imaging, where interfaces between different materials correspond

to jump discontinuities [20, 85, 113], and deconvolution of piecewise constant sig-

nals [28, 64, 121]. In this thesis we develop the mathematically challenging case of

reconstruction of piecewise continuous fields from noisy non-direct measurements.

The recovery of these fields could be thought of as the joint recovery of the values

the fields take in the regions where they are continuous, and the shape of the inter-

faces between these regions. We can consider different ways to parametrize both of

these.

In what follows the forward map will often take the following form. Let X,Y, V

denote three Banach spaces, and let Z denote a function space. Define the following

three maps between these spaces:

• F : X → Z is a construction map, which maps a (typically infinite) set of

parameters to a function. This allows for construction of functions with a

certain structure, such as being piecewise continuous and/or positive.

• K : Z → V is a forward model. This is typically a non-linear map involving

the solution of a partial differential equation.

• O : V → Y is an observation map, which for example maps a function to its

values at a discrete set of points.

The forward map G : X → Y is then defined as the composition G = O ◦ K ◦ F .

In such a setup, it is usually the function F (u) that is of interest, rather than the

parameters u ∈ X themselves, however it is often advantageous to perform inference

directly on u.
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1.2.1 Chapter 2 – MAP Estimators for Piecewise Constant Inver-

sion

In this chapter we consider the case where the interfaces can be parametrized finite

dimensionally, but the fields infinite dimensionally. As such, the parameter space X

takes the form X = Λ×W where Λ ⊆ Rk denotes the set of geometric parameters

defining the interfaces, and the space W = C(D;RN ) contains the fields between

these interfaces. Such a setup was considered using a Bayesian approach in [71]. A

natural application would be in a reservoir model where we are trying to infer the

subsurface structure: it may be known that there is a fault occurring in the geology,

but the location and size of this fault, along with the permeabilities of the different

media, may be unknown. We place a compactly supported prior with continuous

Lebesgue density on the geometric parameters, and a Gaussian prior on the fields,

so that the prior permeability is piecewise Gaussian with random interfaces.

We look at MAP estimation for this problem, i.e. determination of posterior modes,

as has been considered in a function space context in [38]. Since X is infinite

dimensional, the posterior distribution does not admit a Lebesgue density that can

be maximized; we instead use the definition of mode provided in for example [38],

involving maximizing ratios of measures of balls of diminishing size. Similarly to [38]

the MAP estimators can be characterized as minimizers of a particular functional

on the product space of fields and geometric parameters. Numerically solving this

minimization problem we observe that, when a non-trivial geometric model is used,

the posterior distribution arising can be highly multi-modal. Such observations are

confirmed by the behavior of MCMC simulations.

The work in this chapter is in collaboration with my PhD supervisor Andrew Stuart

(University of Warwick), and is contained in [44]. This work complements that

of [71] and [38] by extending the existence and well-posedness theory from [71] to

more general forward maps than groundwater flow, and by analyzing the problem of

MAP estimation for more general priors than the Gaussians considered in [38].

1.2.2 Chapter 3 – The Bayesian Formulation of EIT

In this chapter we focus on the inverse problem associated with electrical impedance

tomography (EIT). The EIT problem is closely related to a classical mathematical

inverse problem, called Calderón’s problem, concerning the recovery of the coeffi-

cient of a divergence form elliptic PDE given either full or partial knowledge of its
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Dirichlet-to-Neumann (DtN) or Neumann-to-Dirichlet (NtD) map. More precisely,

if D ⊆ Rd and g ∈ H1/2(∂D) is given, let u ∈ H1(D) solve−∇ · (σ∇u) = 0 in D

u = g on ∂D.

Then does the DtN mapping Λσ : H1/2(∂D)→ H−1/2(∂D) given by

g 7→ σ∇u · ν,

where ν is the outward unit normal to the boundary ∂D, determine the coefficient σ

in D? An associated, more ill-posed inverse problem is to ask whether noisy partial

knowledge of the NtD map (Λσ)−1 : H−1/2(D)→ H1/2(D) allows for determination

of σ. Much work has been done in this area, for example [6,77,106,132]. An overview

of results in the DtN case is given in [20].

A physically realistic PDE model for the problem, of interest in medical imaging,

was introduced in [128]. In this chapter we provide a rigorous Bayesian formulation

of this EIT problem in an infinite dimensional setting, leading to well-posedness in

the Hellinger metric with respect to the data. We focus particularly on the recon-

struction of piecewise constant fields where the interface between different media

is the primary unknown. We consider three different prior models, corresponding

to three different choices for the space X and the map F defined at the start of

the subsection. Numerical simulations based on the implementation of MCMC are

performed, illustrating the advantages and disadvantages of each type of prior in

the reconstruction, in the case where the true conductivity is a binary field, and

exhibiting the properties of the resulting posterior distribution.

The work in this chapter is in collaboration with my PhD supervisor Andrew Stuart

(University of Warwick), and is contained in [45]. This work gives, as far as we are

aware, the first rigorous Bayesian formulation of the EIT problem on function space,

for three flexible families of priors. Such a formulation allows for the implementa-

tion of function space based algorithms, which provide attractive mesh-independent

properties.

1.2.3 Chapter 4 – Hierarchical Bayesian Level Set Inversion

In this chapter we consider the case where the construction map F thresholds a

continuous function at several levels in order to define a piecewise constant func-
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tion. The inverse problem thus concerns the recovery of interfaces between different

phases. This approach is known as the level set approach, and was introduced in the

1980’s for the study of interface problems [115]. In the context of inverse problems,

the level set approach gained traction after the seminal paper by Santosa [123].

One of the key advantages of the level set approach is the admission of topological

changes from the initial ‘guess’ for the solution. Such methods typically evolve the

level set function u via a Hamilton-Jacobi equation,

∂u

∂t
= v|∇u|,

for some suitable choice of normal velocity field v related to the data misfit functional

[41,98,123].

The Bayesian level set approach to such inverse problems was introduced in [72]

and leads to well-posed posterior distributions under appropriate assumptions on

the prior and forward map. However the resulting posterior distribution can admit

strong sensitivity to the length and amplitude scales encoded in the prior probabilis-

tic model. In this chapter we show that the scale-sensitivity can be circumvented

by means of a hierarchical approach, using a single scalar parameter. The hierar-

chical approach we consider relies on the equivalence of a certain family of Gaus-

sian measures indexed by this parameter, related to Whittle-Matérn distributions.

This equivalence of measures allows for the formulation of a Metropolis-within-

Gibbs algorithm on function space, namely, an algorithm that alternates between

Metropolis-Hastings updates for the field and the scalar parameter.

The equivalence of measures is fundamental for performance of sampling algorithms

on high-dimensional discretizations of the parameter space. As was done for the

non-hierarchical approach, well-posedness of the problem is shown. We also show

effectiveness of a resulting algorithm via numerical simulations, in the context of

groundwater flow, EIT and linear observations – even when no ‘true’ lengthscale is

specified in the data, a consistent value for the lengthscale is identified in simulation,

regardless of the initial guess of this lengthscale.

The work in this chapter is in collaboration with my PhD supervisors Marco Iglesias

(University of Nottingham) and Andrew Stuart (University of Warwick), and is

contained in [43]. This work extends that of [72] to allow for hierarchical priors,

leading to more accurate reconstruction when less is known a priori; it also points

towards the analysis of more general hierarchical models, such as those involving

anisotropic lengthscales, or deeper hierarchies.
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Chapter 2

MAP Estimators for Piecewise

Continuous Inversion

2.1 Introduction

2.1.1 Context and Literature Review

A common inverse problem is that of estimating an unknown function from noisy

measurements of a (possibly nonlinear) map applied to the function. Statistical and

deterministic approaches to this problem have been considered extensively. In this

chapter we focus on the the study of MAP estimators within the Bayesian approach;

these estimators provide a natural link between deterministic and statistical meth-

ods. In the Bayesian formulation, we describe the solution probabilistically and the

distribution of the unknown, given the measurements and a prior model, is termed

the posterior distribution. MAP estimators attempt to work with a notion of so-

lutions of maximal probability under this posterior distribution and are typically

characterized variationally, linking to deterministic methods.

There are two main approaches taken to the study of the posterior. The first is

to discretize the space, and then apply finite dimensional Bayesian methodology

[75]. An advantage to this approach is the availability of a Lebesgue density and

a large amount of previous work which can then be built upon; but issues may

arise (for example computationally) when the dimension of the discretisation space

is increased. An alternative approach is to apply infinite dimensional methodology

directly on the original space, to derive algorithms, and then discretize to implement.
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This approach has been studied for linear problems in [50,96,101], and more recently

for nonlinear problems [39,91,92,131]. It is the latter approach that we focus on in

this chapter.

In some situations it may be that point estimates are more desirable, or more compu-

tationally feasible, than the entire posterior distribution. A detailed study of point

estimates can be found in for example [95]. Three different estimates are commonly

considered: the posterior mean which minimizes L2 loss, the posterior median which

minimizes L1 loss, and posterior modes which minimize zero-one loss. The former

two estimates are unique [104], but a distribution may possess more than one mode.

A consequence of this is that the posterior mean and median may be misleading in

the case of a multi-modal posterior. Posterior modes are often termed maximum a

posteriori (MAP) estimators in the literature.

In this chapter we focus on MAP estimation. If the posterior has Lebesgue density

ρ, MAP estimators are given by the global maxima of ρ. The problem of MAP

estimation in this case is hence a deterministic variational problem, and has been

well-studied [75]. In the infinite-dimensional setting there is no Lebesgue density,

but there has been recent research aimed at characterizing the mode variationally

and linking to the classical regularisation techniques described in, for example, [38] in

the case when Gaussian priors are adopted. Non-Gaussian priors have also been con-

sidered in the infinite dimensional setting – in [65] weak MAP (wMAP) estimators

are defined as generalisations of MAP estimators, and a variational characterisation

of them is provided in the case that the forward map is linear, using the notion of

Fomin derivative.

In this chapter we make a significant extension of the work in [38] to include priors

which are defined by a combination of Gaussian random fields and a finite number

of geometric parameters which define the different domains in which the different

random fields apply. We thereby study the reconstruction of piecewise continuous

fields with interfaces defined by a finite number of parameters. Our motivation for

doing so comes from the work in [27], and its predecessors. In that paper a Bayesian

inverse problem for piecewise constant fields, modelling the permeability appearing

in a two-phase subsurface flow model, was studied. The idea of single point estimates

being misleading is discussed and the existence of multiple local MAP estimators is

shown. We also link our work to that in [65], by characterizing the MAP estimator

via the Fomin derivative.

Such piecewise continuous fields were previously studied in the context of ground-
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{ , , 0.2, 0.5} 7→

Figure 2.1: An example of construction of a piecewise continuous field, using two
continuous fields and two scalar parameters. Here the scalar parameters determine
the points where the interface meets each side of the domain. We work on the
space of continuous fields and parameters, but it is pushforward of these by the
construction map that represents the piecewise continuous field we aim to recover.

water flow [71], where existence and well-posedness of the posterior distribution

were shown. Throughout this chapter we focus on two model problems: ground-

water flow and electrical impedance tomography (EIT). Both of these problems

are important examples of large scale inverse problems, sith applications of great

economic and societal value. MAP estimation in such problems has been studied

previously [14,21,73,113]. However our formulation is quite general; for brevity we

simply illustrate the theory for groundwater flow and EIT, and the numerics only

in the case of groundwater flow.

2.1.2 Mathematical Setting

Let X be a separable Banach space and let Λ ⊆ Rk. X should be thought of as

a function space and Λ a space of geometric parameters. Given (u, a) ∈ X × Λ,

we construct another function ua ∈ Z, say. Considering the ingredients u and a in

the construction of this function ua separately will be useful in what follows. An

example of such a construction is shown in Figure 2.1.

Suppose we have a (typically nonlinear) forward operator G : X × Λ → Y , where

Y = RJ . If (u, a) denotes the true input to our forward problem, we observe data

y ∈ Y given by

y = G(u, a) + η

where η ∼ N(0,Γ), Γ ∈ RJ×J positive definite, is some centred Gaussian noise

on Y . Modelling everything probabilistically, we build up the joint distribution of

(u, a, y) by specifying a prior distribution µ0×ν0 on (u, a) and an independent noise
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model on η. We are then interested in the posterior µ on (u, a) given y. Denote

| · | the Euclidean norm on RJ , and for any positive definite A ∈ RJ×J denote

| · |A := |A−1/2 · | the weighted norm on RJ . Under certain conditions, using a form

of Bayes’ theorem, we may write µ in the form

µ(du,da) ∝ exp

(
−1

2
|G(u, a)− y|2Γ

)
µ0(du)ν0(da).

The modes of the posterior distribution, termed MAP (maximum a posteriori) es-

timators, can be considered ‘best guesses’ for the state (u, a) given the data y. We

now state rigorously what we mean by a MAP estimator for µ, as in [38]. Given

(u, a) ∈ X × Λ, denote by Bδ(u, a) the ball of radius δ centred at (u, a).

Definition 2.1.1 (MAP estimator). For each δ > 0, define

(uδ, aδ) = argmax
(u,a)∈X×Λ

µ(Bδ(u, a)).

Any point (ū, ā) ∈ X × Λ satisfying

lim
δ↓0

µ(Bδ(ū, ā))

µ(Bδ(uδ, aδ))
= 1

is called a MAP estimator for the measure µ.

If this definition is applied to probability measures defined via a Lebesgue density,

MAP estimators coincide with maxima of this density. Here we extend the notion to

the study of piecewise continuous fields. Note that it is not clear from this definition

when MAP estimators will exist or when they are unique; however the connection

with variational problems described in section 2.5.1 makes this more apparent.

2.1.3 Our Contribution

The primary contributions of the chapter are fourfold:

(i) We develop the MAP estimator theory for infinite dimensional geometric in-

verse problems involving discontinuous fields, building on theory in both of

the recent papers [38, 65], and opening up new avenues for the study of MAP

estimators in infinite dimensional inverse problems.

(ii) We explicitly link MAP estimation for these geometric inverse problems to a

variational Onsager-Machlup minimization problem.
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(iii) We show that the theory applies to the groundwater flow model as in [71] and

we show that the theory applies to the EIT problem as in [45].

(iv) We implement numerical experiments for the groundwater flow model and

demonstrate the feasibility of computing (local) MAP estimators within the

geometric formulation, but also show that they can lead to multiple nearby

solutions. We relate these multiple MAP estimators to the behaviour of output

from MCMC to probe the posterior.

2.1.4 Structure of the Chapter

• In section 2.2 we describe the forward maps associated with the groundwater

flow and EIT problems, and show that they have the appropriate regularity

needed in sections 2.4–2.5.

• In section 2.3 we describe the choice of, and assumptions upon, the prior

distribution whose samples comprise piecewise Gaussian random fields with

random interfaces.

• In section 2.4 we show existence and uniqueness of the posterior distribution.

• In section 2.5 we define MAP estimators and prove their equivalence to mini-

mizers of an appropriate Onsager-Machlup functional.

• In section 2.6 we present numerics for the groundwater flow problem. We con-

sider three different prior models and investigate maximizers of the posterior

distribution.

• In section 2.7 we conclude and outline possible future work in the area.

2.2 The Forward Problem

We consider two model problems. Our first problem (groundwater flow) is that of

determining the piecewise continuous permeability of a medium, given noisy mea-

surements of water pressure (or hydraulic head) within it. The second problem

(EIT) is determination of the piecewise continuous conductivity within a body from

boundary voltage measurements.

In what follows, the finite dimensional space Λ will be a space of geometric param-

eters defining the interfaces between different media, and X will be a product of
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function spaces defining the values of the permeabilities/conductivities between the

interfaces.

We begin in subsection 2.2.1 by defining the construction map (u, a) 7→ ua for the

piecewise continuous fields. In subsections 2.2.2 and 2.2.3 we describe the models

for groundwater flow and EIT respectively, and prove regularity properties of the re-

sulting forward maps; these properties are required for our subsequent theory.

2.2.1 Defining the Interfaces

Let D ⊆ Rd be the domain of interest and let Λ ⊆ Rk be the space of geometric

parameters. Let B(D) denote the Borel σ-algebra on D, defined in the Appendix.

Take a collection of set-valued maps Ai : Λ→ B(D), i = 1, . . . , N such that for each

a ∈ Λ we have

N⋃
i=1

Ai(a) = D, Ai(a) ∩Aj(a) = ∅ if i 6= j.

We assume that each map Ai is continuous in the sense that

|a− b| → 0⇒ |Ai(a)∆Ai(b)| → 0

where ∆ denotes the symmetric difference:

A∆B := (A \B) ∪ (B \A).

Let X = C0(D;RN ). Given u = (u1, . . . , uN ) ∈ X and a ∈ Λ we define the function

ua ∈ L∞(D) by

ua = F (u, a) :=

N∑
i=1

ui1Ai(a). (2.2.1)

where F : X × Λ→ L∞(D) is the construction map.

We give four examples of the functions Ai and the sets/interfaces they define.

Example 2.2.1. Let D = [0, 1]2, Λ = [0, 1]2 and N = 2. We specify points a and

b on either side of the square D and join them with a straight line. We then let

A1(a, b) be the region of D below this line and A2(a, b) = D \A1(a, b). Example sets

Ai(a, b) for various parameters a, b are shown in Figure 2.2.
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Figure 2.2: Possible sets Ai corresponding to Example 2.2.1

Example 2.2.2. Let D = [0, 1]2, Λ = [0, 1]2 and N = 2. Choose a continuous

map H : Λ → L∞([0, 1]) such that H(a, b)(0) = a and H(a, b)(1) = b for all

(a, b) ∈ Λ. Let A1(a, b) be the region of D beneath the graph of the curve H(a, b) and

let A2(a, b) = D \ A1(a, b). This setup includes the previous example: H(a, b)(x) =

a+ (b− a)x defines the appropriate straight lines.

The continuity of A1 and A2 can be seen by noting that

|A1(a1, b1)∆A1(a2, b2)| = |A2(a1, b1)∆A2(a2, b2)|

≤
∫ 1

0
|H(a1, b1)(x)−H(a2, b2)(x)| dx

≤ ‖H(a1, b1)−H(a2, b2)‖∞

and using the continuity of H into L∞([0, 1]).

For example, one may take H to be given by

H(a, b)(x) = a+ (b− a)x+ x sin(6πx)/10

which can be seen to be continuous into L∞([0, 1]). Example sets Ai(a, b) for various

parameters a, b, with this choice of H, are shown in Figure 2.3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: Possible sets Ai, corresponding to Example 2.2.2

Example 2.2.3. We can generalize the previous example to allow the inclusion of

a fault. Let D = [0, 1]2, Λ = [0, 1]2 × [−1, 1] and N = 2. Let p ∈ (0, 1) denote the
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horizontal location of the fault. Given H : [0, 1]2 → L∞([0, 1]) as in the previous

example, define H̃ : Λ→ L∞([0, 1]) by

H̃(a, b, c)(x) =

H(a, b)(x) x ∈ [0, p]

c+H(a, b)(x) x ∈ (p, 1]

so that the parameter c determines the (signed) magnitude of the fault. Defining

the sets A1(a, b, c) and A2(a, b, c) as the regions of D beneath and above the curve

H̃(a, b, c) respectively, the continuity can be seen in a similar manner to the previous

example. Example sets Ai(a, b, c) for various parameters a, b, c are shown in Figure

2.4.
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Figure 2.4: Possible sets Ai, corresponding to Example 2.2.3 in the case p = 1/2.

Example 2.2.4. Again working with D = [0, 1]2, but with a much larger parameter

space, one could also select points at specific x-coordinates and linearly interpolate

between them. Fix K,N ∈ N and set Λ = ΞKN−1 ⊆ [0, 1](N−1)×K , where ΞN−1 is the

simplex

ΞN−1 = {(y1, . . . , yN−1) ∈ [0, 1]N−1 | 0 ≤ y1 ≤ . . . ≤ yN−1 ≤ 1}.

Then given a ∈ Λ, define the functions fi(a), i = 1, . . . , N − 1, to be the linear

interpolation of the points
( j−1
K−1 , aij

)K
j=1

. The sets Ai(a), i = 1, . . . , N − 1, are

then defined to be the regions between the graphs of the functions fi(a) and fi−1(a),

and AN (a) = D \ ∪N−1
i=1 Ai(a). Note that the sets (Ai(a, b))

N
i=1 are disjoint for fixed

a, b ∈ Λ by the choice of Λ. Example sets Ai(a, b) for various parameters a, b, with

this choice of H, are shown in Figure 2.5.

In order to see the continuity of these maps, we first partition the domain into strips

Dj,

Dj =

{
(x, y) ∈ D

∣∣∣∣ j − 1

K − 1
≤ x ≤ j

K − 1

}
, j = 1, . . . ,K − 1
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so that we have

Ai(a) =
K−1⋃
j=1

Ai(a) ∩Dj .

It follows from properties of the symmetric difference that

|Ai(a)∆Ai(b)| ≤
K−1∑
j=1

|(Ai(a) ∩Dj)∆(Ai(b) ∩Dj)|.

It hence suffices to show that the maps Ai(·) ∩Dj are continuous for all i, j. This

follows from the same argument as in Example 2.2.2, for sufficiently small |a− b|.
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Figure 2.5: Possible sets Ai, corresponding to Example 2.2.4 in the case K = 11,
N = 6

2.2.2 The Darcy Model for Groundwater Flow

We consider the Darcy model for groundwater flow on a domain D ⊆ Rd, d = 1, 2, 3.

Let κ = (κij) denote the permeability tensor of the medium, p the pressure of the

water, and assume the viscosity of the water is constant. Darcy’s law [37] tells us

that the velocity is proportional to the gradient of the pressure:

v = −κ∇p.

Additionally, a local form of mass conservation tells us that

∇ · v = f.
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where f is a recharge term. Combining these two equations, and imposing Dirichlet

boundary conditions for simplicity, results in the PDE−∇ · (κ∇p) = f in D

p = g on ∂D.

This is the PDE we will consider in the forward model, and it gives rise to a solution

map κ 7→ p.

For simplicity we will work in the case where κ is an isotropic (scalar) permeability,

bounded above and below by positive constants, and so it can be represented as the

image of some bounded function under a positive continuously differentiable map

σ : R→ R+.

Let V = H1(D), the Sobolev space of square integrable once weakly differentiable

functions on D [55]. Then given f ∈ H−1(D), g ∈ H1/2(∂D), u ∈ X and a ∈ Λ,

define pu,a ∈ V to be the solution of the weak form of the PDE−∇ · (σ(ua)∇pu,a) = f in D

pu,a = g on ∂D.
(2.2.2)

We are first interested in the regularity of the map R : X × Λ → V given by

R(u, a) = pu,a. We first recall what it means for pu,a to be a solution of (2.2.2). Since

g ∈ H1/2(∂D), by the trace theorem [55] there exists G ∈ V such that tr(G) = g.

The solution pu,a of (2.2.2) is then given by pu,a = qu,a + G, where qu,a ∈ H1
0 (D)

solves the PDE−∇ ·
(
σ(ua)∇qu,a

)
= f +∇ ·

(
σ(ua)∇G

)
in D

qu,a = 0 on ∂D.
(2.2.3)

The following lemma tells us that the mapR is well defined and has certain regularity

properties. Its proof is given in the appendix.

Lemma 2.2.5. The map R : X × Λ→ V is well-defined and satisfies:

(i) for each (u, a) ∈ X × Λ,

‖R(u, a)‖V ≤ (‖f‖V ∗ + ‖σ(ua)‖L∞‖G‖V )/κmin(u, a) + ‖G‖V
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where κmin(u, a) is given by

κmin(u, a) = essinf
x∈D

σ(ua(x)) > 0

and ‖f‖V ∗ denotes the dual norm of f as defined in the Appendix;

(ii) for each a ∈ Λ, R(·, a) : X → V is locally Lipschitz continuous, i.e. for every

r > 0 there exists L(r) > 0 such that, for all u, v ∈ X with ‖u‖X , ‖v‖X < r

and all a ∈ Λ, we have

‖R(u, a)−R(v, a)‖V ≤ L(r)‖u− v‖X ;

(iii) for each u ∈ X, R(u, ·) : Λ→ V is continuous.

We now choose a continuous linear observation operator ` : V → RJ . For example,

writing ` = (`1, . . . , `J), we could take

`i(p) =

∫
D

1

(2πε)d/2
e−|xi−y|

2/2εp(y) dx, i = 1, . . . , J (2.2.4)

for some ε > 0, so that `i approximates a point observation at the point xi ∈ D.

Our forward operator G : X × Λ→ RJ is then defined by G = ` ◦ R, so that it can

be written as the composition

(u, a) 7→ ua 7→ κ = σ(ua) 7→ p 7→ `(p)

From the above regularity of R we can deduce the following regularity properties of

our forward operator G:

Proposition 2.2.6. Define the map G : X × Λ→ RJ as above. Then G satisfies

1. For each r > 0 and u, v ∈ X with ‖u‖X , ‖v‖X < r, there exists C(r) > 0 such

that for all a ∈ Λ,

|G(u, a)− G(v, a)| ≤ C(r)‖u− v‖X .

2. For each u ∈ X, the map G(u, ·) : Λ→ RJ is continuous.

Proof. 1. The map ` is defined to be a continuous linear functional, and so in

particular is Lipschitz. Since we have G = `◦R the result follows from Lemma

2.2.5(ii).
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2. This follows from the continuity of ` and Lemma 2.2.5(iii).

2.2.3 The Complete Electrode Model for EIT

Electrical Impedance Tomography (EIT) is an imaging technique that aims to make

inference about the internal conductivity of a body from surface voltage measure-

ments. Electrodes are attached to the surface of the body, current is injected, and

the resulting voltages on the electrodes are measured. Applications include both

medical imaging, where the aim is to non-invasively detect internal abnormalities

within a human patient, and subsurface imaging, where material properties of the

subsurface are differentiated via their conductivities. Early references include [66] in

the context of medical imaging and [90] in the context of subsurface imaging.

The complete electrode model (CEM) is proposed for the forward model in [128],

and shown to agree with experimental data up to measurement precision. In its

strong form, the PDE reads

−∇ · (κ(x)∇v(x)) = 0 x ∈ D∫
el

κ
∂v

∂n
dS = Il l = 1, . . . , L

κ(x)
∂v

∂n
(x) = 0 x ∈ ∂D \⋃L

l=1 el

v(x) + zlκ(x)
∂v

∂n
(x) = Vl x ∈ el, l = 1, . . . , L.

(2.2.5)

The domain D represents the body, and (el)
L
l=1 ⊆ ∂D the electrodes attached to

its surface with corresponding contact impedances (zl)
L
l=1. A current Il is injected

into each electrode el, and a voltage measurement Vl made. Here κ represents

the conductivity of the body, and v the potential within it. Note that the solution

comprises both a function v ∈ H1(D) and a vector (Vl)
L
l=1 ∈ RL of boundary voltage

measurements.

A corresponding weak form exists, and is shown to have a unique solution (up

to constants) given appropriate conditions on κ, (zl)
L
l=1 and (Il)

L
l=1 – see [128] for

details. Moreover, under some additional assumptions, the mapping κ 7→ (Vl)
L
l=1 is

known to be Fréchet differentiable when we equip the conductivity space with the

supremum norm [73].
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D

el

Figure 2.6: An example domain D, with attached electrodes (el)
L
l=1, for the EIT

problem.

We can apply different current stimulation patterns to the electrodes, that is, dif-

ferent values of (Il)
L
l=1 in (2.2.5), to yield additional information. Assume that

we have M different (linearly independent) current stimulation patterns (I(m))Mm=1.

This yields M different mappings κ 7→ (V
(m)
l )Ll=1 each with the regularity above, or

equivalently a mapping κ 7→ V where V ∈ RJ with J = LM .

Analogously to the Darcy model case, we will consider isotropic conductivities of

the form κ = σ(ua), where σ : R → R+ is positive and continuously differentiable.

Our forward operator G : X × Λ→ RJ , is then given by the composition

(u, a) 7→ ua 7→ κ = σ(ua) 7→
(
(v(1), V (1)), . . . , (v(M), V (M))

)
7→ (V (1), . . . , V (M)).

We show in the appendix that the map defined in this way has the same regularity

as the map corresponding to the Darcy model.

Proposition 2.2.7. Define the map G : X × Λ→ RJ as above. Then G satisfies

1. For each r > 0 and u, v ∈ X with ‖u‖X , ‖v‖X < r, there exists C(r) > 0 such

that for all a ∈ Λ,

|G(u, a)− G(v, a)| ≤ C(r)‖u− v‖X .

2. For each u ∈ X, the map G(u, ·) : Λ→ RJ is continuous.
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2.3 Onsager-Machlup Functionals and Prior Modelling

In this section we recall the definition of an Onsager-Machlup functional for a mea-

sure which is equivalent1 to a Gaussian measure. We then introduce the prior

measures that we will consider, first on the function space X, then the geometric

parameter space Λ, and finally the product space X × Λ. We conclude the section

by extending the definition of Onsager-Machlup functional so that it is appropriate

for the measures we consider here, supported on fields and geometric parameters

which are combined to make piecewise continuous functions.

2.3.1 Onsager-Machlup Functionals

The Onsager-Machlup functional of a measure is the negative logarithm of its

Lebesgue density when such a density exists, and otherwise can be thought of analo-

gously. We start by defining it precisely for measures defined via density with respect

to a Gaussian, allowing for infinite dimensional spaces on which the Lebesgue mea-

sure is not defined. Suppose that µ is a measure equivalent to a Gaussian measure

µ0; the definition of such measures is found in the Appendix. Then the Onsager-

Machlup functional for µ is defined as follows.

Definition 2.3.1 (Onsager-Machlup functional I). Let µ be a measure on a Ba-

nach space Z which is equivalent to µ0, where µ0 is a Gaussian measure on Z with

Cameron-Martin space E. Let Bδ(z) denote the ball of radius δ centred at z ∈ Z.

A functional I : Z → R is called the Onsager-Machlup functional for µ if, for each

x, y ∈ E,

lim
δ↓0

µ(Bδ(x))

µ(Bδ(y))
= exp (I(y)− I(x))

and I(x) =∞ for x /∈ E.

Remarks 2.3.2. (i) The Onsager-Machlup functional is only defined up to addi-

tion of a constant.

(ii) If Z is finite dimensional and µ admits a positive Lebesgue density ρ, then

I(x) = − log ρ(x) for all x ∈ Z. In light of the previous remark, this is true

even if ρ is not normalized.

1Two measures ν, µ on a measurable space (M,M) are equivalent if ν(A) = 0 if and only if
µ(A) = 0, for A ∈M.
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(iii) Let Z = Rn be finite dimensional, and let µ0 = N(0,Σ) be a Gaussian measure

on Z. Let Γ ∈ Rm×m be a positive-definite matrix, A ∈ Rm×n and y ∈ Rm.

Define µ by

dµ

dµ0
(x) ∝ exp

(
−1

2
|Ax− y|2Γ

)
so that

dµ

dx
(x) ∝ exp

(
−1

2
|Ax− y|2Γ −

1

2
|x|2Σ

)
.

Then by the previous remark, the Onsager-Machlup functional for µ is given

by

I(x) =
1

2
|Ax− y|2Γ +

1

2
|x|2Σ

for all x ∈ Z, which is a Tikhonov regularized least squares functional.

(iv) The preceding example (iii) may be extended to an infinite dimensional setting.

Let Z be a separable Banach space, and let µ0 = N(0, C0) be a Gaussian

measure on Z with Cameron-Martin space (E, 〈·, ·〉E , ‖ ·‖E). Let Γ ∈ Rm×m be

a positive-definite matrix, A : X → Rm a bounded linear operator and y ∈ Rm.

Define µ by

dµ

dµ0
(x) ∝ exp

(
−1

2
|Ax− y|2Γ

)
.

Then Theorem 3.2 in [38] tells us that the Onsager-Machlup functional for µ

is given by

I(x) =
1

2
|Ax− y|2Γ +

1

2
‖x‖2E .

(v) In this chapter, the posterior distribution will be a measure on the product

space Z = X × Λ. The prior distribution will be an independent product

of a Gaussian on X and a compactly supported measure on Λ. Due to the

assumption of compact support, the prior will not be equivalent to a Gaussian

measure on Z and so the above definition doesn’t apply; we provide a suitable

extension to the definition in subsection 2.3.4.

As we are taking a Bayesian approach to the inverse problem, we incorporate our

prior beliefs about the permeability/conductivity into the model via probability
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measures on X and Λ. We will combine these into a prior measure on the product

space X × Λ. We equip this space with any (complete) norm ‖(·, ·)‖ such that if

‖(u, a)‖ → 0, then ‖u‖X → 0 and |a| → 0.

2.3.2 Priors for the Fields

We wish to put priors on the fields u1, . . . , uN ∈ C0(D). We use independent

Gaussian measures ui ∼ µi0 := N(mi, Ci), where the means mi ∈ C0(D), and each

covariance operator Ci : C0(D) → C0(D) is trace-class and positive definite. It

follows that the vector (u1, . . . , uN ) ∼ µ1
0 × . . .× µN0 =: µ0 is Gaussian on X:

µ0 = N

(
m,

N⊕
i=1

Ci
)

where m = (m1, . . . ,mN ) ∈ X. If Ei denotes the Cameron-Martin space [39] of µi0,

then that of µ0 is given by

E =
N⊕
i=1

Ei

with inner product given by the sum of those of its component spaces.

The Onsager-Machlup functional of µ0 is known to be given by

J(u) =

1
2‖u−m‖2E u−m ∈ E
∞ u−m /∈ E.

This can be seen, for example, as a consequence of Proposition 18.3 in [97].

Remark 2.3.3. We may assume that the different fields are correlated under the

prior, so long as µ0 remains Gaussian on X – this does not affect any of the following

theory. Allowing correlations between the fields and the geometric parameters under

the prior is a more technical issue however, and so we will assume that these are

independent.

Example 2.3.4. Define the negative Laplacian with Neumann boundary conditions

as follows:

A = −∆, D(A) =

{
u ∈ H2(D)

∣∣∣∣ du

dν
= 0 on ∂D,

∫
D
u(x) dx = 0

}
.
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Then A is invertible. We can define Ci = A−αi, where each αi > d/2. Then each Ci
is trace-class and positive definite, and samples from each µi0 will be almost surely

continuous and so µ0 can be considered as a Gaussian measure on X. Moreover,

regularity of the samples will increase as αi increases, see [39] for details.

2.3.3 Priors for the Geometric Parameters

We also want to put a prior measure on the geometric parameters, i.e. we want

to choose a probability measure on Λ. Since Λ ⊆ Rk the analysis is more straight-

forward than the infinite dimensional case. Let ν be a probability measure on Λ

with compact support S ⊆ Λ. We assume ν is absolutely continuous with respect

to the Lebesgue measure and that its density ρ is continuous on S. Despite being

defined on a finite dimensional space, the measure ν is not necessarily equivalent to

the Lebesgue measure on the whole of Rk and so the previous definition of Onsager-

Machlup functional does not apply. We hence must formulate a new definition for

this case.

Since ρ > 0 on int(S), we can use the continuity of ρ to calculate the limits of ratios

of small ball probabilities for ν on int(S). Let a1, a2 ∈ int(S), then

lim
δ↓0

ν(Bδ(a1))

ν(Bδ(a2))
= lim

δ↓0

∫
Bδ(a1) ρ(a) da∫
Bδ(a2) ρ(a) da

= lim
δ↓0

1
|Bδ(a1)|

∫
Bδ(a1) ρ(a) da

1
|Bδ(a2)|

∫
Bδ(a2) ρ(a) da

=
ρ(a1)

ρ(a2)

= exp (log ρ(a1)− log ρ(a2)) .

If either a1 or a2 lie outside of S the limit can be seen to be 0 or ∞ respectively. It

hence makes sense to define the Onsager-Machlup functional for ν on Λ\∂S as

K(a) =

− log ρ(a) a ∈ int(S)

∞ a /∈ S.

For a ∈ ∂S, we define K(a) to be the limit of K from the interior:

K(a) = − lim
b→a

b∈int(S)

log ρ(b) a ∈ ∂S
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which is well defined due to the continuity of ρ on int(S). K is then continuous on

the whole of S.

Remark 2.3.5. If we were to define K on ∂S in the same way that we defined it

on Λ \ ∂S, K would have a positive jump at the boundary related to the geometry of

S. This would mean that K was not lower semi-continuous on S which would cause

problems when seeking minimizers. The definition we have chosen is appropriate: if

any minimizing sequence (an)n≥1 ⊆ int(S) of K has an accumulation point on ∂S,

then ν has a mode at that point.

If we have no prior knowledge about the interfaces and Λ is compact, we could place

a uniform prior on the whole of Λ. Otherwise we could either choose a prior with

smaller support, or one that weights certain areas more than others.

2.3.4 Priors on X × Λ

We assume that the priors on the fields and the geometric parameters are indepen-

dent, so that we may take the product measure µ0 × ν0 as our prior on X × Λ.

Note that if F : X ×Λ→ L∞(D) denotes the construction map (u, a) 7→ ua defined

earlier by (2.2.1), then our prior permeability/conductivity distribution on L∞(D)

is given by the pushforward µ∗0 = F#(µ0× ν0), where the pushforward is as defined

in the Appendix. This is much more cumbersome to deal with however, since for

example L∞(D) is not separable. It is for this reason we incorporate the mapping F

into the forward map G. Assuming now that the prior µ0×ν0 is as described above,

we can define the Onsager-Machlup functional for measures µ on X × Λ which are

equivalent to µ0 × ν0.

Definition 2.3.6 (Onsager-Machlup functional II). Let µ be a measure on X × Λ

equivalent to µ0 × ν0, where µ0 and ν0 satisfy the assumptions detailed above. Let

Bδ(u, a) denote the ball of radius δ centred at (u, a) ∈ X × Λ. A functional I :

X × Λ→ R is called the Onsager-Machlup functional for µ if,

(i) for each (u, a), (v, b) ∈ E × int(S),

lim
δ↓0

µ(Bδ(u, a))

µ(Bδ(v, b))
= exp (I(v, b)− I(u, a)) ;
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(ii) for each (u, a) ∈ E × ∂S,

I(u, a) = lim
b→a

b∈int(S)

I(u, b);

(iii) I(u, a) =∞ for u /∈ E or a /∈ S.

2.4 Likelihood and Posterior Distribution

We return to the abstract setting mentioned in the introduction. Let X be a sep-

arable Banach space, Λ ⊆ Rk and Y = RJ . Suppose we have a forward operator

G : X ×Λ→ Y . If (u, a) denotes the true input to our forward problem, we observe

data y ∈ Y given by

y = G(u, a) + η

where η ∼ Q0 := N(0,Γ), Γ ∈ RJ×J positive definite, is Gaussian noise on Y

independent of the prior.

It is clear that we have y|(u, a) ∼ Qu,a := N(G(u, a),Γ). We can use this to formally

find the distribution of (u, a)|y. First note that

Qu,a(dy) = exp

(
−Φ(u, a; y) +

1

2
|y|2Γ

)
Q0(dy)

where the potential (or negative log-likelihood) Φ : X×Λ×Y → R is given by

Φ(u, a; y) =
1

2
|G(u, a)− y|2Γ. (2.4.1)

Hence under suitable regularity conditions, Bayes’ theorem tells us that the distri-

bution µ of (u, a)|y satisfies

µ(du,da) ∝ exp
(
− Φ(u, a; y)

)
µ0(du)ν0(da)

after absorbing the exp
(

1
2 |y|2Γ

)
term into the normalisation constant.

We now make this statement rigorous. To keep the situation general, we do not

insist that Φ takes the form (2.4.1), and instead assert only that Φ satisfies the

following assumptions.
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Assumptions 2.4.1. There exists X ′ × Λ′ ⊆ X × Λ such that

(i) for every ε > 0 there is an M1(ε) ∈ R such that for all u ∈ X ′ and all a ∈ Λ′

Φ(u, a; y) ≥M1(ε)− ε‖u‖2X ;

(ii) for each u ∈ X ′ and y ∈ Y , the potential Φ(u, ·; y) : Λ′ → R is continuous;

(iii) there exists a strictly positive M2 : R+ × R+ × R+ → R+ monotonic non-

decreasing separately in each argument, such that for each r > 0, u ∈ X ′ and

a ∈ Λ′, and y1, y2 ∈ Y with |y1|, |y2| < r,

|Φ(u, a; y1)− Φ(u, a; y2)| ≤M2(r, ‖u‖X , |a|)|y1 − y2|;

(iv) there exists a strictly positive M3 : R+×Λ×Y → R+, continuous in its second

component, such that for each r > 0, a ∈ Λ′ and y ∈ Y , and u1, u2 ∈ X ′ with

‖u1‖X , ‖u2‖X < r,

|Φ(u1, a; y)− Φ(u2, a; y)| ≤M3(r, a, y)‖u1 − u2‖X .

These assumptions are used in the proof of existence and well-posedness of the

posterior distribution, which is given in the appendix:

Theorem 2.4.2 (Existence and well-posedness). Let Assumptions 2.4.1 hold. As-

sume that (µ0 × ν0)(X ′ × Λ′) = 1, and that (µ0 × ν0)((X ′ × Λ′) ∩ B) > 0 for some

bounded set B ⊆ X × Λ. Then

(i) Φ is µ0 × ν0 ×Q0-measurable;

(ii) for each y ∈ Y , Z(y) given by

Z(y) =

∫
X×Λ

exp(−Φ(u, a; y))µ0(du)ν0(da)

is positive and finite, and so the probability measure µy,

µy(du,da) =
1

Z(y)
exp(−Φ(u, a; y))µ0(du)ν0(da) (2.4.2)

is well-defined.
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(iii) Assume additionally that, for every fixed r > 0, there exists ε > 0 with

exp(ε‖u‖2X)(1 +M2(r, ‖u‖X , |a|)2) ∈ L1
µ0×ν0(X × Λ;R).

Then there is C(r) > 0 such that for all y, y′ ∈ Y with |y|, |y′| < r,

dHell(µ
y, µy

′
) ≤ C|y − y′|.

where dHell is the Hellinger metric, defined in the Appendix.

Remark 2.4.3. In this chapter we are focused on the case when the field prior µ0

is taken to be Gaussian. However, the above existence and well-posedness result

still holds if, for example, µ0 is taken to be Besov rather than Gaussian, since a

Fernique-type theorem holds for such priors [39, 94].

We show that for both choices of test models, the potential (2.4.1) satisfies Assump-

tions 2.4.1:

Proposition 2.4.4. Let X = C0(D;RN ), and let G : X×Λ→ Y denote the forward

map corresponding to either the groundwater flow or EIT problem, as detailed in

section 2.2. Let y ∈ Y and let Γ ∈ RJ×J be positive definite. Define the potential

Φ : X × Λ× Y → R by

Φ(u, a; y) =
1

2
|G(u, a)− y|2Γ.

Then Φ satisfies Assumptions 2.4.1, with X ′ × Λ′ = X × Λ.

Proof. (i) Φ ≥ 0 so this is true with M1 ≡ 0.

(ii) Fix u ∈ X ′ and y ∈ Y . Propositions 2.2.6 and 2.2.7 tell us that G(u, ·) is

continuous for either choice of test model. The map z 7→ |z−y|2Γ is continuous,

and so Φ(u, ·; y) is continuous too.

(iii) A consequence of Propositions 2.2.6 and 2.2.7 is that for each u ∈ X and a ∈ Λ,

G(u, a) can be bounded in terms of ‖u‖X and |a|. The result then follows from

the local Lipschitz property of the map y 7→ |y|2.

(iv) Propositions 2.2.6 and 2.2.7 tell us that G(·, a) is locally Lipschitz for either

choice of test model. The map z 7→ |z − y|2Γ is locally Lipschitz, and hence we

conclude that Φ(·, a; y) is locally Lipschitz, with Lipschitz constant indepen-

dent of a.
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With a choice of prior as described in section 2.3, we can therefore apply Theorem

2.4.2 in the cases where the forward map is one of the two described in section 2.2

and the observational noise is Gaussian. In this case, the constant M2(r, ‖u‖X , |a|)
appearing in Assumptions 2.4.1(iii) is independent of ‖u‖X and |a|, and so the

integrability condition (iii) in Theorem 2.4.2 always holds via Fernique’s theorem.

The condition on positivity of a bounded set can be seen by taking, for example,

B = B1(0)× S, where S is the (compact) support of ν0.

2.5 MAP Estimators

In subsection 2.5.1 we characterize the MAP estimators for the posterior µ in

terms of the Onsager-Machlup functional for µ. In subsection 2.5.2 we relate this

Onsager-Machlup functional to the Fomin derivative of µ, with reference to the

work [65].

2.5.1 MAP Estimators and the Onsager-Machlup Functional

Throughout this section we assume that µ is given by (2.4.2). Furthermore we

assume that µ0 has mean zero for simplicity. Additionally, when we assume that

Assumptions 2.4.1 hold, we will assume that X ′ × Λ′ = X × Λ.

Suppressing the dependence of Φ on the data y since it is not relevant in the sequel,

we define the functional I : X × Λ→ R by

I(u, a) = Φ(u, a) + J(u) +K(a) (2.5.1)

where J,K are as defined in subsections 2.3.2, 2.3.3 respectively:

J(u) =

1
2‖u−m‖2E u−m ∈ E
∞ u−m /∈ E,

and K(a) =


− log ρ(a) a ∈ int(S)

− lim
b→a

b∈int(S)

log ρ(b) a ∈ ∂S

∞ a /∈ S.

In this section we attain the following three results concerning I and µ, which are

proved in the appendix.
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Theorem 2.5.1. Let Assumptions 2.4.1 hold. Then the function I defined by (2.5.1)

is the Onsager-Machlup functional for µ, where the Onsager-Machlup functional is

as defined in Definition 2.3.6.

Theorem 2.5.2. Let Assumptions 2.4.1 hold. Then there exists (ū, ā) ∈ E×S such

that

I(ū, ā) = inf{I(u, a) |u ∈ E, a ∈ S}.

Furthermore, if (un, an)n≥1 is a minimizing sequence satisfying I(un, an)→ I(ū, ā),

then there is a subsequence (unk , ank)k≥1 converging to (ū, ā) (strongly) in E × S.

Theorem 2.5.3. Let Assumptions 2.4.1 hold. Assume also that there exists an

M ∈ R such that Φ(u, a) ≥M for any (u, a) ∈ X × Λ.

(i) Let (uδ, aδ) = argmax
(u,a)∈X×Λ

µ(Bδ(u, a)). There is a (ū, ā) ∈ E × S and a subse-

quence of (uδ, aδ)δ>0 which converges to (ū, ā) strongly in X × Λ.

(ii) The limit (ū, ā) is a MAP estimator and minimizer of I.

A consequence of Theorem 2.5.3 is that, under its assumptions, MAP estimators

and minimizers of the Onsager-Machlup functional are equivalent. The proof of this

corollary is identical to that of Corollary 3.10 in [38]:

Corollary 2.5.4. Under the conditions of Theorem 2.5.3 we have the following.

(i) Any MAP estimator minimizes the Onsager-Machlup functional I.

(ii) Any (u∗, a∗) ∈ E × S which minimizes the Onsager-Machlup functional I is a

MAP estimator for the measure µ given by (2.4.2).

2.5.2 The Fomin Derivative Approach

In recent work of Helin and Burger [65], the concept of MAP estimators was gener-

alized to weak MAP (wMAP) estimators using the notion of Fomin differentiability

of measures. The definition of wMAP estimators is such that if û is a MAP esti-

mator then it is a wMAP estimator, but not necessarily vice versa. Under certain

assumptions, they show that wMAP estimators are equivalent to minimizers of a

particular functional. The assumptions do not hold in our case, since our forward

map is non-linear and our prior µ0 × ν0 isn’t necessarily convex, however the func-

tional agrees with our objective functional I. Thus in what follows we provide a
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link between the Fomin derivative of the posterior µ and our objective functional

I.

The Fomin derivative of a measure on a Banach space X equipped with its Borel

σ-algebra B(X) is defined as follows.

Definition 2.5.5. A measure λ on X is called Fomin differentiable along the vector

z ∈ X if, for every set A ∈ B(X), there exists a finite limit

dzλ(A) = lim
t→0

λ(A+ tz)− λ(A)

t
.

The measure dzλ is called the Fomin derivative of λ in the direction z. The Radon-

Nikodym density of dzλ with respect to λ is denoted βλz , and is called the logarithmic

derivative of λ along z.

Example 2.5.6. (i) Let ν0 be a measure on Rk with Lebesgue density ρ, supported

and continuously differentiable on S ⊆ Rk. Then for any a ∈ int(S) and b ∈ Rk

we have

βν0b (a) =
∇ρ(a)

ρ(a)
· b = ∂b log ρ(a).

(ii) Let µ0 be a Gaussian measure on a Banach space X with Cameron-Martin

space (E, 〈·, ·〉E). Then for any u ∈ X and h ∈ E we have

βµ0h (u) = −〈u, h〉E .

This follows from the Cameron-Martin and dominated convergence theorems,

both of which are given in the Appendix.

(iii) Again using the Cameron-Martin and dominated convergence theorems, we see

that with ν0 and µ0 as above, for any (u, a) ∈ X × int(S) and (h, b) ∈ E ×Rk,

βµ0×ν0(h,b) (u, a) = βµ0h + βν0b .

We can use the above example to characterize the Fomin derivative (or equiv-

alently the logarithmic derivatives) of our posterior distribution µ, given by

(2.4.2).

Theorem 2.5.7. Assume that Φ : X × Λ → R is bounded measurable with

uniformly bounded derivative, and assume that ρ is continuously differentiable
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on S. Then for each (u, a) ∈ X × int(S) and (h, b) ∈ E × Rk, we have

βµ(h,b)(u, a) = −∂(h,b)Φ(u, a)− 〈u, h〉E + ∂b log ρ(a)

= −∂(h,b)I(u, a)

Therefore, (û, â) is a critical point of I if and only if βµ(h,b)(û, â) = 0 for all

(h, b) ∈ E × Rk.

Proof. We use result (2.1.13) from [16], which tells us that if λ is a measure

differentiable along z and f is a bounded measurable function with uniformly

bounded partial derivative ∂zf , then the measure f · λ is differentiable along

z as well and

dz(f · λ) = ∂zf · λ+ f · dzλ.

We apply this result with λ = µ0 × ν0, f = exp(−Φ)/Z and z = (u, a). Note

that f satisfies the assumptions of (2.1.13) due to the assumptions on Φ. The

result then follows using Example 2.5.6 (iii) above.

2.6 Numerical Experiments

In this section we perform some numerical experiments related to the theory above

for a variety of geometric models, in the case of the groundwater flow forward map in-

troduced in subsection 2.2.2. We both compute minimizers of the relevant Onsager-

Machlup functional (i.e. MAP estimators), and we sample the posterior distribution

using a state-of-the-art function space Metropolis-Hastings MCMC method. We

then relate the samples to the MAP estimators. From these numerical experiments

we observe the following behaviour of the posterior distribution.

1. The posterior distribution can be highly multi-modal, especially when the

parameterized geometry is non-trivial. This is evident from the sensitivity

of the minimisation of the objective functional on its initial state, and the

behaviour of MCMC chains initialized at these calculated minimizers.

2. When the geometry is incorrect the fields attempt to compensate, which pre-

sumably contributes to the existence of multiple local minimizers of the ob-

jective functional; this occurs in both the MAP estimation and the MCMC

samples. A consequence is that many of the local minimizers lack the desired
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sharp interfaces. These minimizers could however be used to suggest more

appropriate geometric parameters for the initialisation.

3. The mixing rates of MCMC chains have a strong dependence upon which local

minimizer they are initialized at: acceptance rates can vary wildly when the

initial state is changed but all other parameters are kept fixed. This provides

some insight into the shape of the posterior distribution.

4. Though often there are many local minimizers, they can be separated into

classes of minimizers sharing similar characteristics, such as close geometry.

MCMC chains typically tend to stay within these classes, which can be ob-

served by monitoring the closest local minimizer to an MCMC chain’s state

at each step. This suggests that the posterior can possess several clusters of

nearby modes.

One conclusion we can draw from the above points is that there are often many

different geometries that are consistent with the data. This is not necessarily an

effect of noise on the measurements, and the effect may persist as the noise level goes

to zero, since it is unknown if these geometric parameters are uniquely identifiable

in general.

2.6.1 Test Models

We consider three different geometric models: a two parameter, two layer model;

a five parameter, three layer model with fault; and a five parameter channelized

model.

In what follows, as in Example 2.3.4, we define the negative Laplacian with Neumann

boundary conditions:

A = −∆, D(A) =

{
u ∈ H2(D)

∣∣∣∣ du

dν
= 0 on ∂D,

∫
D
u(x) dx = 0

}
.

Recall that if u ∼ N(0, A−α) with α > d/2, then u is almost surely continuous

[39].

Additionally, if W ⊂ Rk is a subset of Euclidean space with positive and finite

Lebesgue measure, U(W ) will denote the uniform probability distribution onW .
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Figure 2.7: The definition of the geometric parameters a = (a1, a2) in Model 1.

Model 1 (Two layer)

This model is described in Example 2.2.1. The geometric parameters a = (a1, a2)

are defined as in Figure 2.7. For simulations, we use the choice of prior

µ0 = N(1, A−1.4)×N(−1, A−1.8),

ν0 = U([0, 1])× U([0, 1]).

Model 2 (Three layer with fault)

This model is described in [71], where it is labelled Test Model 1. The geometric pa-

rameters a = (a1, a2, a3, a4, a5) are defined as in Figure 2.8, with the fault occurring

at x = 0.55. For simulations, we use the choice of prior

µ0 = N(2, 2A−1.4)×N(0, A−1.8)×N(−2, 2A−1.4),

ν0 = U(S)× U(S)× U([−0.3, 0.3]),

where S ⊆ [0, 1]2 is the simplex S = {(x, y) | 0 ≤ x ≤ 1, x ≤ y ≤ 1}.

Model 3 (Channel)

This model is described in [71], where it is labelled Test Model 2. The geometric

parameters a = (a1, a2, a3, a4, a5) are defined as in Figure 2.9. Here a1, a2, a3, a4, a5
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Figure 2.8: The definition of the geometric parameters a = (a1, a2, a3, a4, a5) in
Model 2.
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Figure 2.9: The definition of the geometric parameters a = (a1, a2, a3, a4, a5) in
Model 3.

represent the channel amplitude, frequency, angle, initial point and width respec-

tively. For simulations, we use the choice of prior

µ0 = N(1, A−1.4)×N(−1, A−1.8),

ν0 = U([0, 1])× U([π, 4π])× U([−π/4, π/4])× U([0, 1])× U([0, 0.4]).

For each model, we fix a true permeability (u†, a†) as a draw from the corresponding

prior distribution, generated on a mesh of 2562 points. For the forward model, we

take the coefficient map σ(·) = exp(·). We observe the pressure on a grid (xi)
25
i=1

of 25 uniformly spaced points, via the maps (2.2.4) with ε = 0.05. We add i.i.d.

Gaussian noise N(0, γ2) to each observation, taking γ = 0.01. The resulting relative
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errors on the data can be seen in Table 2.1. Small relative errors of this size typically

make the posterior distribution hard to sample as they lead to measure concentration

phenomena; MAP estimation can thus be particularly important.

Model Number Mean relative error (%) Range of relative errors (%)

1 0.5 0.02− 3.5
2 0.9 0.1− 4.0
3 0.3 0.1− 1.0

Table 2.1: The relative error on the data, when each measurement is perturbed by
an instance of N(0, 0.012) noise.

2.6.2 MAP Estimation

Based on the theory in section 2.5, we can calculate MAP estimators by minimizing

the Onsager-Machlup functional for the posterior distribution. We compute local

minimizers of the Onsager-Machlup functional using the following iterative alter-

nating method.

Algorithm 1 Iterative Alternating Method

1. Choose an initial state (u0, a0) ∈ X × Λ.
2. Update the geometric parameters simultaneously using the Nelder-Mead algo-

rithm.
3. Update each field individually using a line-search in the direction provided by

the Gauss-Newton algorithm.
4. Go to 2.

The Nelder-Mead and Gauss-Newton algorithms are discussed in [108], in sections

9.5 and 10.3 respectively. Since we do not update the fields and geometric parameters

simultaneously, it is possible that this algorithm will get caught in a saddle point:

consider for example the function f : R × R → R, f(x, y) = xy, at the point

(0, 0), being minimized alternately in the coordinate directions. Hence once the

algorithm stalls, we propose a large number of random simultaneous updates in an

attempt to find a lower functional value. If this is successful, we return to step 2 of

the algorithm. We terminate the algorithm once the difference between successive

values of Φ is below TOL = 10−5. Calculations are performed on a mesh of 642

points in order to avoid an inverse crime.

To ensure that we explore the support of the posterior distribution, we choose a

variety of initial states (u0, a0)∈ X × Λ for the minimisation such that I(u0, a0) <∞
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in the continuum setting. To this end, we let a0 be a draw from the prior distribution

ν0, and take u0 to lie in the Cameron-Martin space of µ0. Specifically, if a component

of u ∈ X has prior distribution N(m,A−α), we take the corresponding component of

u0 to be a draw from N(m,A−α−d/2). Output of the algorithm is shown in Figures

2.10-2.12.

We first comment on the minimizers of the Onsager-Machlup functional for Model 1.

Generally the geometric parameters are closely recovered regardless of the initialisa-

tion state, though there is more variation in the fields. In the simulations where the

geometry is inaccurate, for example simulations 7, 17 and 46, the fields can be seen

to be compensating by forming a ‘soft’ interface where the true interface is.

The minimizers associated with Model 2 admit much more variation, though it is

possible to partition them into smaller subsets of minimizers which share similar

characteristics to one another, as mentioned in point (iv) at the beginning of the

section. The clustering of the different minimizers is performed by eye, classifying

them according to similar geometric parameters. Additionally we have an Other

class, containing the minimizers which do not appear similar to one another nor

appear to fit into any other class. We see later with MCMC simulations that these

states do still act as local maximizers of the posterior probability.

The minimizers of the Onsager-Machlup functional for Model 3 show even more

variation than those for Model 2, with the geometry in half of the minimizers not

even being close to the true geometry. In the cases where the geometry is drastically

wrong the fields have again attempted to compensate. This behaviour is particularly

evident in the Other class, and is echoed in the MCMC simulations later. The Other

class here is much larger than for Model 2, though as with Model 2 these states do

appear to act as distinct local maximizers of the posterior probability.

This multi-modality of the posterior distribution is not unexpected. The paper [27]

considers the history matching problem in reservoir simulation, in which inference is

done jointly on both geometric and permeability parameters in the IC fault model.

Though the forward map and observation maps are different in our model, we ob-

serve the same clustering of nearby local MAP estimators, and increased multi-

modality as the dimension of the parameter space increases. In [27] it is observed

that the global minimum often does not correspond to the truth, especially in the

presence of measurement noise, and so all local minimizers of the Onsager-Machlup

functional should be sought before drawing conclusions about the permeabilities –

this appears to be the case in our model as well. We note that MCMC can be useful
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in identifying a range of such minimizers, in view of the links established in the next

subsection between MCMC and MAP estimation.

2.6.3 MCMC and Local Minimizers

We now observe the behaviour of MCMC chains initialized at these local minimizers

of the Onsager-Machlup functional. We use a Metropolis-within-Gibbs algorithm for

the sampling, alternating between preconditioned Crank-Nicolson (pCN) updates

for the fields, see [34] for details, and Random Walk Metropolis updates for the

geometric parameters. Again, simulations are performed on a mesh of 642 points

in order to avoid an inverse crime. 105 samples are taken for each chain, with the

initial 2 × 104 discarded as burn-in. The conditional means calculated from the

samples are shown in Figures 2.13-2.15.

We monitor the value that Φ takes along the chain (u(n), a(n)), and compare it with

the value Φ takes on the local minimizers (uiMAP, a
i
MAP). This is shown in Figures

2.16-2.18, with the horizontal lines being the different values of Φ(uiMAP, a
i
MAP).

Note that it makes no sense to monitor the value that the objective functional I

takes along the chain as the fields almost surely do not lie in the corresponding

Cameron-Martin spaces, and so I is almost surely infinite along the chain in the

continuum setting.

In addition, we monitor which minimizer the chain is nearest at each step, in the

permeability space. Specifically, we look at

mn := argmin
i
‖F (u(n), a(n))− F (uiMAP, a

i
MAP)‖L2(D) (2.6.1)

where F : X × Λ→ L∞(D) is the construction map (2.2.1) from the state space to

the permeability space. We make the choice of the L2 norm over the L∞ norm for

the permeability space to avoid over-penalizing incorrect geometry. A selection of

traces of mn are shown in Figures 2.19-2.21. These illustrate that even though some

of the local minimizers are very far from the true log-permeability, they do indeed

act as local maximizers of the posterior probability.

We now discuss the above monitored quantities, and their relation to MAP estima-

tors, on a model-by-model basis. Despite the slight variation in the fields of the

minimizers from Model 1, the conditional means arising from the MCMC are nearly

all identical. Simulation 23 stands out from the rest due to its slightly incorrect

geometry – this effect can be seen in the trace plot of Φ, Figure 2.16, where the
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value of Φ remains larger than the simulations started elsewhere. The traces of Φ

for all other initialisations behave similarly to one another, taking similar misfit val-

ues after 2× 104 samples. From Figure 2.19, it can be seen that the MCMC chains

considered all spend a lot of time close to MAP estimator 38, despite this not being

the estimator with the lowest functional value.

For Model 2, typically the conditional means within the different classes are very

similar to one another. Classes A and C resemble each other, and Class B has

compensated for incorrect geometry with the centre field. Faults have developed

in Class D, though there is still some compensation in the field. The centre field

and a small fault has appeared in Class E, but again the fields are compensating.

The geometric parameters for the permeabilities in the Other class remain relatively

unchanged, but the fields have more freedom to attain a lower misfit than in the

Onsager-Machlup functional minimisation due to the lack of regularisation term.

Figure 2.17 shows evidence for a number of local minima with a large data misfit

value Φ, with some chains appearing to remain stuck in their vicinity. The four

chains visible in Figure 2.17 (top) correspond to chains 49, 47, 45 and 43, from

highest to lowest Φ value, all lying in the Other class – despite their significantly

incorrect geometry, the corresponding MAP estimators appear to be genuine local

maximizers of the posterior probability.

In the channelized model, Model 3, there is yet more variation between local min-

imizers. Here the compensation effect by the fields is even more apparent in the

conditional means, especially in the Other class. From Figure 2.18 it appears that

the local minima are much sharper and more sparsely distributed than the previous

two models. Again the chains with the largest Φ values were initialized at mini-

mizers in the Other class, suggesting the existence of many posterior modes with

incorrect geometry.

The mixing of the MCMC chains varies heavily based on the initialisation points of

the chains: with the same jump parameters for the field and geometric parameter

proposals, acceptance rates vary largely based on which minimizer the chain was

started from. This indicates that some of the minima are much sharper than others.

This is also evident from the traces of mn defined above, Figures 2.19-2.21, especially

in Model 3. Note also from these figures that the nearest local minimum typically

lies in the same class as the initialisation state, though jumps between classes are

possible. Though not shown, in Model 2, whenever the initial state lies in Class A,

then the nearest minimizer always lies in Class A.
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2.7 Conclusions and Future Work

We have made a new contribution to the recently developed theory of MAP es-

timation in infinite dimensions [38, 65]. We link MAP estimation to a variational

Onsager-Machlup functional. The work is focused on priors for piecewise Gaus-

sian random fields, with random interfaces parameterized finite-dimensionally. Such

fields arise naturally in applications such as groundwater flow and EIT, and these are

used to illustrate the theory and numerics. The work opens up several new avenues

for investigation. A major theoretical direction is to fully reconcile the approaches

in [38] and [65]. That is, show equivalence of weak MAP estimators and minimizers

of a functional related to the Fomin derivative of the posterior, under the more

general assumptions of a nonlinear forward map and a certain class of non-convex

priors. The work in this chapter suggests that this may be possible. On the appli-

cations side an important new direction would be to consider problems in which the

geometric parameters are no longer independent from the fields a priori. A possible

extension could be to treat the geometric parameters as hyperparameters for the

fields under the prior. This would allow, for example, the fields to have specific

boundary conditions at the interfaces, which may be more physically appropriate in

some contexts. A related hierarchical model was considered in [107], in which prior

samples were piecewise white; this could be extended to allow for spatial correlations

in the continuum setting. Computationally an exciting direction is to build upon

definitions of MAP estimators to develop hybrid algorithms which fully exploit local

minimizer structure of the Onsager-Machlup functional within MCMC.
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Figure 2.10: (Model 1) the true log-permeability field (top), and 50 local minimizers
arising from minimisation initialized at draws from a smoothed prior distribution.
Simulation 12 has the lowest functional value, with I(u12

MAP, a
12
MAP) = 2847.
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Figure 2.11: (Model 2) the true log-permeability field (top), and 50 local minimizers
arising from minimisation initialized at draws from a smoothed prior distribution.
Simulation 7 has the lowest functional value, with I(u7

MAP, a
7
MAP) = 2567. The

minimizers have been divided into classes based on similar characteristics.
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Figure 2.12: (Model 3) the true log-permeability field (top), and 50 local minimizers
arising from minimisation initialized at draws from a smoothed prior distribution.
Simulation 20 has the lowest functional value, with I(u20

MAP, a
20
MAP) = 2117. The

minimizers have been divided into classes based on similar characteristics.
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Figure 2.13: (Model 1) the true log-permeability field (top), and the conditional
mean arising from MCMC chains initialized at the corresponding local minimizers
above.
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Figure 2.14: (Model 2) the true log-permeability field (top), and the conditional
mean arising from MCMC chains initialized at the corresponding local minimizers
above. We group them into the same classes as the local minimizers.
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Figure 2.15: (Model 3) the true log-permeability field (top), and the conditional
mean arising from MCMC chains initialized at the corresponding local minimizers
above. We group them into the same classes as the local minimizers.
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Figure 2.16: (Model 1) The evolution of Φ as the MCMC chains progress. The
horizontal lines represent the value of each local minimizer under Φ. The same
traces are shown in each figure with different ranges on the vertical axes. Nearly
all of the simulations find a small value of Φ almost immediately, but simulation 5
remains caught in the local minimizer for some time before it follows.
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Figure 2.17: (Model 2) The evolution of Φ as the MCMC chains progress. The
horizontal lines represent the value of each local minimizer under Φ. The same traces
are shown in each figure with different ranges on the vertical axes. The majority
of the simultions find a small value of Φ almost immediately, but numerous fail to
reach there, settling in local minima. The shape of these minima can be seen in
Figure 2.14, and generally correspond to those in the same class as the initial state.
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Figure 2.18: (Model 3) The evolution of Φ as the MCMC chains progress. The
horizontal lines represent the value of each local minimizer under Φ. The same traces
are shown in each figure with different ranges on the vertical axes. The majority
of the simulations find a small value of Φ almost immediately, but numerous fail to
reach there, settling in local minima. The shape of these minima can be seen in
Figure 2.15, and generally correspond to those in the same class as the initial state.
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Figure 2.19: (Model 1) The trace of mn as defined by (2.6.1), when the chain is
initialized at a variety of minimizers – specifically numbers 1, 2, . . . , 8.
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Figure 2.20: (Model 2) The trace of mn as defined by (2.6.1), when the chain is
initialized at a variety of minimizers – specifically numbers 7, 14, 21, 28, 35, 39, 46
and 50. The different classes are alternately shaded.

58



Figure 2.21: (Model 3) The trace of mn as defined by (2.6.1), when the chain is
initialized at a variety of minimizers – specifically numbers 7, 13, 21, 33, 38, 47, 48
and 49. The different classes are alternately shaded.
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2.8 Appendix

In this appendix we provide proofs of the results given in the chapter.

2.8.1 Results From Section 2.2

Before we prove Lemma 2.2.5 we require the following lemma.

Lemma 2.8.1. Let (X,F , µ) be a measure space and f ∈ L1(X,F , µ). Let Bn ⊆ F
be a sequence of measurable subsets of X with µ(Bn)→ 0 as n→∞. Then∫

Bn

f(x)µ(dx)→ 0 as n→∞.

Proof. Write fn(x) = f(x)1Bn(x). We have that fn → 0 in measure: for any δ > 0,

µ({x ∈ X | |fn(x)| > δ}) ≤ µ({x ∈ X | |fn(x)| 6= 0}) ≤ µ(Bn)→ 0.

Now suppose that ‖fn‖L1 does not tend to zero. Then there exists δ > 0 and a

subsequence (fnk)k≥1 such that ‖fnk‖L1 ≥ δ for all k ≥ 1. This subsequence still

converges to zero in measure, and so admits a further subsequence that converges

to zero almost surely. We can bound this subsequence above uniformly by f , and

so an application of the dominated convergence theorem leads to a contradiction.

The result follows.

Proof of Lemma 2.2.5. Showing that R is well-defined is equivalent to showing that

PDE (2.2.3) has a unique solution for all (u, a) ∈ X × Λ. Since ua ∈ L∞(D) it is

bounded, and so by the continuity and positivity of σ there exist κmin, κmax > 0

with κmin ≤ σ(ua) ≤ κmax. The associated bilinear form is hence bounded and

coercive. The right hand side can be seen to lie in H−1(D) since G ∈ H1(D) and

σ(ua) ≤ κmax, and so a unique solution exists by Lax-Milgram.

(i) In its weak form, the PDE (2.2.3) is given by∫
D
σ(ua)∇qu,a · ∇ϕ = f(ϕ)−

∫
D
σ∇G · ∇ϕ for all ϕ ∈ V.
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Taking ϕ = qu,a we deduce that

κmin(u, a)‖∇qu,a‖2L2 ≤
∫
D
σ(ua)∇qu,a · ∇qu,a

= f(qu,a)−
∫
D
σ(ua)∇G · ∇qu,a

≤ ‖f‖V ∗‖qu,a‖V + ‖σ(ua)‖L∞‖∇G‖L2‖∇qu,a‖L2

and so we have the estimate

‖pu,a‖V ≤ ‖qu,a‖V + ‖G‖V
≤ (‖f‖V ∗ + ‖σ(ua)‖L∞‖G‖V )/κmin(u, a) + ‖G‖V .

(ii) Let u, v ∈ X and a ∈ Λ. Then pu,a − pv,a satisfies the PDE−∇ ·
(
σ(ua)∇(pu,a − pv,a)

)
= ∇ ·

(
(σ(ua)− σ(va))∇pv,a

)
in D

pu,a − pv,a = 0 on ∂D.

Setting κ∗(u, v, a) = κmin(u, a) ∧ κmin(v, a), we see

κ∗(u, v, a)‖∇(pu,a − pv,a)‖2L2 ≤
∫
D
σ(ua)|∇(pu,a − pv,a)|2

=

∫
D

(σ(ua)− σ(va))∇(pu,a − pv,a) · ∇pv,a

≤ ‖σ(ua)− σ(va)‖L∞‖∇(pu,a − pv,a)‖L2‖∇pv,a‖L2

and so by (i),

‖pu,a − pv,a‖V ≤ ‖pv,a‖V ‖σ(ua)− σ(va)‖L∞/κ∗(u, v, a)

≤ ‖σ(ua)− σ(va)‖L∞
×
(
(‖f‖V ∗ + ‖σ(ua)‖L∞‖G‖V )/κ∗(u, a)2 + ‖G‖V /κ∗(u, a)

)
.

Using that the Ai are disjoint gives that

‖σ(ua)− σ(va)‖L∞ =

∥∥∥∥∥σ
(

N∑
i=1

ui1Ai(a)

)
− σ

(
N∑
i=1

vi1Ai(a)

)∥∥∥∥∥
L∞

= ‖σ(uk)− σ(vk)‖L∞

for some k = k(a). Now suppose that ‖u‖X , ‖v‖X < r. Then the C1 property
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of σ yields

‖σ(uk)− σ(vk)‖L∞ ≤ max
|t|≤r
|σ′(t)| · ‖uk − vk‖L∞ ≤ max

|t|≤r
|σ′(t)| · ‖u− v‖X .

Finally we deal with the κ−j∗ terms:

κ∗(u, v, a)−j =

[(
essinf
x∈D

eu
a(x)

)
∧
(

essinf
x∈D

ev
a(x)

)]−j
≤
(

min
|t|≤r

σ(t) ∧min
|t|≤r

σ(t)

)−j
=

(
min
|t|≤r

σ(t)

)−j
.

We bound the ‖σ(ua)‖L∞ term similarly. Putting the above bounds together,

we have

‖R(u, a)−R(v, a)‖V = ‖pu,a − pv,a‖V

≤ max
j=1,2

(
min
|t|≤r

σ(t)

)−j (
‖f‖V ∗ + ‖G‖V

(
max
|t|≤r

σ(t) + 1

))
×max
|t|≤r
|σ′(t)| · ‖u− v‖X

= L(r)‖u− v‖X .

Note that the constant L(r) is uniform in a.

(iii) We use a similar approach to the previous part. Given u ∈ X and a, b ∈ Λ,

the difference pu,a − pu,b satisfies−∇ · (σ(ua)∇(pu,a − pu,b)) = ∇ · ((σ(ua)− σ(ub))∇pu,b) in D

pu,a − pu,b = 0 on ∂D

which leads to the bound

κ†(u, a, b)‖∇(pu,a − pu,b)‖2L2 ≤
∫
D
σ(ua)|∇(pu,a − pu,b)|2

=

∫
D

(σ(ua)− σ(ub))∇(pu,a − pu,b) · ∇pu,b

≤ ‖∇(pu,a − pu,b)‖L2‖(σ(ua)− σ(ub))∇pu,b‖L2
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where κ†(u, a, b) = κmin(u, a) ∧ κmin(u, b). It follows that

‖pu,a − pu,b‖V ≤ ‖(σ(ua)− σ(ub))∇pu,b‖L2/κ†(u, a, b).

Again by the disjointness of the Ai and the C1 property of σ,

‖(σ(ua)− σ(ub))∇pu,b‖L2 =

∥∥∥∥∥
(
σ

(
N∑
i=1

ui1Ai(a)

)
− σ

(
N∑
i=1

ui1Ai(b)

))
∇pu,b

∥∥∥∥∥
L2

=

∥∥∥∥∥
N∑
i=1

(
σ
(
ui1Ai(a)

)
− σ

(
ui1Ai(b)

))
∇pu,b

∥∥∥∥∥
L2

≤
N∑
i=1

∥∥(σ (ui1Ai(a)

)
− σ

(
ui1Ai(b)

))
∇pu,b

∥∥
L2

≤
N∑
i=1

max
|t|≤‖ui‖∞

|σ′(t)| ·
∥∥∣∣ui1Ai(a) − ui1Ai(b)

∣∣∇pu,b∥∥L2

≤
N∑
i=1

max
|t|≤‖ui‖∞

|σ′(t)| · ‖ui‖∞
∥∥1Ai(a)∆Ai(b)∇pu,b

∥∥
L2

since |1A − 1B| = 1A∆B. Now as before we can bound κ−1
† :

κ†(u, v, a)−1 =

[(
essinf
x∈D

eu
a(x)

)
∧
(

essinf
x∈D

eu
b(x)

)]−1

≤
(

min
|t|≤max ‖ui‖∞

σ(t) ∧ min
|t|≤max ‖ui‖∞

σ(t)

)−1

≤
(

min
|t|≤‖u‖X

σ(t)

)−1

.

Putting the above bounds together, we have

‖R(u, a)−R(u, b)‖V = ‖pu,a − pu,b‖V

≤
(

min
|t|≤‖u‖X

σ(t)

)−1 N∑
i=1

max
|t|≤‖ui‖∞

|σ′(t)| · ‖ui‖∞
∥∥1Ai(a)∆Ai(b)∇pu,b

∥∥
L2

≤
(

min
|t|≤‖u‖X

σ(t)

)−1 N∑
i=1

max
|t|≤‖ui‖∞

|σ′(t)| · ‖ui‖∞
(∫

Ai(a)∆Ai(b)
|∇pu,b|2

)1/2

.

The right hand goes to zero as each |Ai(a)∆Ai(b)| → 0 by Lemma 2.8.1, since

|∇pu,b| ∈ L2(D), and so the continuity of R(u, ·) follows from the assumed
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continuity of the maps Ai.

Proof of Proposition 2.2.7. 1. Theorem 2.3 in [73] tells us that the mapping from

the conductivity to the weak solution of (2.2.5) is Fréchet differentiable with

respect to the supremum norm, and hence locally Lipschitz. Note that the

mapping from the solution to the boundary voltage measurements, (v, V ) 7→
V , is smooth, and the assumptions on σ imply that it is Lipschitz. It hence

suffices to show that the mapping u 7→ F (u, a) is Lipschitz for each a ∈ Λ. Let

u, v ∈ X and a ∈ Λ, then

‖F (u, a)− F (v, a)‖∞ ≤
N∑
i=1

‖ui − vi‖∞1Ai(a) ≤ C‖u− v‖X

and the result follows.

2. By Corollary 2.8 in [45] and the continuity of σ, it suffices to show that an → a

in Λ implies that F (u, an)→ F (u, a) in measure. For any p ∈ (1,∞) we have

that ∫
D
|F (u, an)− F (u, a)|p dx ≤

N∑
i=1

∫
D
|ui|p1Ai(an)∆Ai(a) dx

≤
N∑
i=1

‖ui‖p∞ · |Ai(an)∆Ai(a)|

From the assumed continuity of Ai(·) it follows that F (u, an)→ F (u, a) in Lp

for any p ∈ (1,∞), and hence in measure.

2.8.2 Results From Section 2.4

Proof of Theorem 2.4.2. (i) We first claim that the assumptions on Φ mean that

Φ(·, ·; y) : X ′ × Λ′ → R is continuous for each y ∈ Y . Fix y ∈ Y and (u, a) ∈
X ′×Λ′. Choose any approximating sequence (un, an)n≥1 ⊆ X ′×Λ′ such that

(un, an) → (u, a). Then the assumptions on the norm on X × Λ means that

‖un − u‖X → 0 and |an − a| → 0. Letting r > max{‖u‖X , supn ‖un‖X}, we
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may approximate

|Φ(un, an; y)− Φ(u, a; y)| ≤ |Φ(un, an; y)− Φ(u, an; y)|+ |Φ(u, an; y)− Φ(u, a; y)|
≤M3(r, an, y)‖un − u‖X + |Φ(u, an; y)− Φ(u, a; y)|

≤
(

sup
k∈N

M3(r, ak, y)

)
· ‖un − u‖X + |Φ(u, an; y)− Φ(u, a; y)|

where the supremum is finite due the continuity of M3 in its second component.

Since Φ is also continuous in its second component, we see that the right-hand

side tends to zero as (un, an)→ (u, a).

Now as Φ(·, ·; y) : X ′ × Λ′ → R is continuous and (µ0 × ν0)(X ′ × Λ′) = 1,

Φ(·, ·; y) is µ0 × ν0-measurable. Setting Z = X ′ × Λ′, we can consider Φ :

Z × Y → R. This is a Caratheodory function, and it is known that these are

jointly measurable, see for example [7]. We conclude that Φ is µ0 × ν0 × Q0

measurable.

(ii) We first show Z(y) is finite. Since µ0 is Gaussian, by Fernique’s theorem there

exists α > 0 such that ∫
X

exp(α‖u‖2X)µ0(du) <∞.

Then using Assumptions 2.4.1(i), we have the lower bound

Φ(u, a; y) ≥M1(α)− α‖u‖2X

from which we conclude that Z(y) <∞.

Now fix r > 0. Let y ∈ Y and take (u, a) ∈ X ′ × Λ′ with max{‖u‖X , |a|} < r.

Then we have by the local Lipschitz property

|Φ(u, a; y)| ≤M3(r, y)‖u‖X + |Φ(0, a; y)| ≤M3(r, a, y)r + |Φ(0, a; y)|.

Using the continuity of Φ and M3 in a, we can maximize the right hand side

over |a| < r to deduce that

|Φ(u, a; y)| ≤ K(r, y).

Thus Φ(·, ·; y) is bounded on bounded sets.

Now we can proceed as in [39]. Using that (µ0 × ν0)(X ′ × Λ′) = 1, we have
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that

Z(y) =

∫
X′×Λ′

exp(−Φ(u, a; y))µ0(du)ν0(da).

Set B′ = (X ′ × Λ′) ∩B, and set

R = sup{max{‖u‖X , |a|} | (u, a) ∈ B′}.

We deduce that

sup
(u,a)∈B′

Φ(u, a; y) ≤ K(R, y) <∞

and so

Z(y) ≥
∫
B′

exp(−K(R, y))µ0(du)ν0(da) = exp(−K(R, y))(µ0 × ν0)(B′) > 0.

Hence the measure µy is well-defined.

(iii) The well-posedness of the posterior is proved in virtually the same way as

Theorem 4.5 in [39].

2.8.3 Results From Section 2.5

Throughout this section, for δ > 0 and (u, a) ∈ X × Λ, we will denote J δ(u, a) =

µ(Bδ(u, a)). To prove Theorems 2.5.1 and 2.5.2, we first require two lemmas.

Lemma 2.8.2. Let (u1, a1), (u2, a2) ∈ E × int(S). Then

lim
δ↓0

(µ0 × ν0)(Bδ(u1, a1))

(µ0 × ν0)(Bδ(u2, a2))
= e

1
2
‖u2‖2E−

1
2
‖u1‖2E · ρ(a1)

ρ(a2)

= exp (J(u2) +K(a2)− J(u1)−K(a1)) .

Proof. We adapt the proof of Proposition 18.3 in [97] to first show that

(µ0 × ν0)(Bδ(u1, a1)) ∼ e− 1
2
‖u1‖2E (µ0 × ν0)(Bδ(0, a1)) as δ ↓ 0.

The first half of the proof is almost identical to that in [97], though some care must

be taken since we cannot (a priori) separate the integrals over balls in X × Λ into
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products of those over balls in X and Λ. Using the Cameron-Martin theorem we

see that

(µ0 × ν0)(Bδ(u1, a1)) = e−
1
2
‖u1‖2E

∫
Bδ(0,a1)

e〈u1,u〉E µ0(du)ν0(da).

Since 〈u1,−u〉E = −〈u1, u〉E and Bδ(0, a1) is symmetric about 0 ∈ X, it follows

that∫
Bδ(0,a1)

e〈u1,u〉E µ0(du)ν0(da) =

∫
Bδ(0,a1)

1

2

(
e〈u1,u〉E + e−〈u1,u〉E

)
µ0(du)ν0(da)

≥ (µ0 × ν0)(Bδ(0, a1))

which gives the inequality

(µ0 × ν0)(Bδ(u1, a1)) ≥ e− 1
2
‖u1‖2E (µ0 × ν0)(Bδ(0, a1)). (2.8.1)

For the opposite bound, we write 〈u1, ·〉E as the sum of two functionals zc and zs on

E. We aim to choose zc to be continuous on E, and zs ‘small’ in some sense. Then

we have that

(µ0 × ν0)(Bδ(u1, a1)) = e−
1
2
‖u1‖2E

∫
Bδ(0,a1)

ezc(u)+zs(u) µ0(du)ν0(da)

≤ exp

(
−1

2
‖u1‖2E + δ · sup

(u,a)∈B1(0,a1)

zc(u)

)
·[

(µ0 × ν0)(Bδ(0, a1)) +

∫
Bδ(0,a1)

(ezs(u) − 1)µ0(du)ν0(da)

]

where we have used the linearity of zc to extract δ from the supremum. As in [97],

using a result from [138], a special case of the Gaussian correlation conjecture, it

follows that for any C ∈ R and any convex set B ⊆ X symmetric about 0,

µ0(B ∩ {u ∈ X | |zs(u)| > C}) ≤ µ0(B)µ0(|zs(·)| > C).
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Then for any increasing function ϕ : R+ → R+, one has∫
Bδ(0,a1)

ϕ(|zs(u)|)µ0(du)ν0(da) =

∫
X×Λ

ϕ(|zs(u)|)1Bδ(0,a1)(u, a)µ0(du)ν0(da)

=

∫ ∞
0

(µ0 × ν0)({(u, a) ∈ Bδ(0, a1) | ϕ(|zs(u)|) > t}) dt

=

∫ ∞
0

(µ0 × ν0)({(u, a) ∈ Bδ(0, a1) | |zs(u)| > ϕ−1(t)}) dt

=

∫ ∞
0

∫
Λ
µ0({u ∈ X | (u, a) ∈ Bδ(0, a1), |zs(u)| > ϕ−1(t)}) ν0(da)dt

≤
∫ ∞

0

∫
Λ
µ0({u ∈ X | (u, a) ∈ Bδ(0, a1)})µ0(|zs(·)| > ϕ−1(t)) ν0(da)dt

=

∫ ∞
0

µ0(|zs(·)| > ϕ−1(t))

(∫
Λ
µ0({u ∈ X | (u, a) ∈ Bδ(0, a1)}) ν0(da)

)
︸ ︷︷ ︸

(µ0×ν0)(Bδ(0,a1))

dt

= (µ0 × ν0)(Bδ(0, a1))

∫ ∞
0

µ0(|zs(·)| > ϕ−1(t)) dt

= (µ0 × ν0)(Bδ(0, a1))

∫ ∞
0

µ0(ϕ(|zs(·)|) > t) dt

= (µ0 × ν0)(Bδ(0, a1))

∫
X
ϕ(|zs(u)|)µ0(du).

Choosing ϕ(·) = exp(·)− 1 in this formula gives∫
Bδ(0,a1)

(e|zs(u)| − 1)µ0(du)ν0(da) ≤ (µ0 × ν0)(Bδ(0, a1))

∫
X

(e|zs(u)| − 1)µ0(du).

The space of linear measurable functionals on E, which contains 〈u1, ·〉E , is the L2

closure of E∗. Thus for any ε > 0, the functionals zc, zs can be chosen in order that

the first of them is continuous and the second of them satisfies the inequality∫
X

(e|zs(u)| − 1)µ0(du) ≤ ε.

It follows that for each ε > 0 we have

(µ0 × ν0)(Bδ(u1, a1))

≤ exp

(
−1

2
‖u1‖2E + δ · sup

(u,a)∈B1(0,a1)

zc(u)

)
(µ0 × ν0)(Bδ(0, a1))(1 + ε).

(2.8.2)

Since balls are bounded, ε > 0 is arbitrary and zc is continuous, we can combine
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(2.8.1) and (2.8.2) to deduce that there exists M > 0 such that

e−
1
2
‖u1‖2E (µ0 × ν0)(Bδ(0, a1)) ≤ (µ0 × ν0)(Bδ(u1, a1))

≤ e− 1
2
‖u1‖2E+Mδ(µ0 × ν0)(Bδ(0, a1)).

Now looking at the ratio of measures we see

lim
δ↓0

(µ0 × ν0)(Bδ(u1, a1))

(µ0 × ν0)(Bδ(u2, a2))
= e

1
2
‖u2‖2E−

1
2
‖u1‖2E · lim

δ↓0

(µ0 × ν0)(Bδ(0, a1))

(µ0 × ν0)(Bδ(0, a2))
.

We now deal with the geometric parameters. Let a∗ ∈ int(S) so that ρ is positive

in a neighbourhood of a∗ (we may take a∗ = a1 or a2 since we assume they lie in

int(S)). Then

(µ0 × ν0)(Bδ(0, a1))

(µ0 × ν0)(Bδ(0, a2))
=

∫
Bδ(0,a1) ρ(a)µ0(du)da∫
Bδ(0,a2) ρ(a)µ0(du)da

=

∫
Bδ(0,a∗) ρ(a+ a1 − a∗)µ0(du)da∫
Bδ(0,a∗) ρ(a+ a2 − a∗)µ0(du)da

=

∫
Bδ(0,a∗)

ρ(a+a1−a∗)
ρ(a) µ0(du)ν0(da)∫

Bδ(0,a∗)
ρ(a+a2−a∗)

ρ(a) µ0(du)ν0(da)
.

For sufficiently small δ both of the integrands are continuous. A mean-value prop-

erty hence holds for the integrals, and so we may divide both the numerator and

denominator by (µ0 × ν0)(Bδ(0, a∗)) and take limits to obtain

lim
δ↓0

(µ0 × ν0)(Bδ(0, a1))

(µ0 × ν0)(Bδ(0, a2))
=

ρ(a+ a1 − a∗)
ρ(a)

∣∣∣∣
a=a∗

ρ(a+ a2 − a∗)
ρ(a)

∣∣∣∣
a=a∗

=
ρ(a1)

ρ(a2)
.

We conclude that

lim
δ↓0

(µ0 × ν0)(Bδ(u1, a1))

(µ0 × ν0)(Bδ(u2, a2))
= e

1
2
‖u2‖2E−

1
2
‖u1‖2E · ρ(a1)

ρ(a2)

= exp (J(u2) +K(a2)− J(u1)−K(a1)) .

Lemma 2.8.3. Let f, g : Λ→ R be continuous, and (u1, a1), (u2, a2) ∈ E × int(S).
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Then

lim
δ↓0

∫
Bδ(u1,a1) f(a)µ0(du)ν0(da)∫
Bδ(u2,a2) g(a)µ0(da)ν0(da)

= e
1
2
‖u2‖2E−

1
2
‖u1‖2E · ρ(a1)

ρ(a2)
· f(a1)

g(a2)
.

Proof. Let ε > 0. Then by the continuity of f and g, and the assumption on the

norm on X × Λ, there exists δ > 0 such that

(f(a1)− ε)(µ0 × ν0)(Bδ(u1, a1))

(g(a2) + ε)(µ0 × ν0)(Bδ(u2, a2))
≤
∫
Bδ(u1,a1) f(a)µ0(du)ν0(da)∫
Bδ(u2,a2) g(a)µ0(du)ν0(da)

≤ (f(a1) + ε)(µ0 × ν0)(Bδ(u1, a1))

(g(a2)− ε)(µ0 × ν0)(Bδ(u2, a2))
.

The result now follows by the previous lemma.

Proof of Theorem 2.5.1. Let (u1, a1), (u2, a2) ∈ E × int(S). The case Φ ≡ 0 is the

result of Lemma 2.8.2. Now proceeding analagously to [38],

J δ(u1, a1)

J δ(u2, a2)
=

∫
Bδ(u1,a1) exp(−Φ(u, a))µ0(du)ν0(da)∫
Bδ(u2,a2) exp(−Φ(u, a))µ0(du)ν0(da)

=

∫
Bδ(u1,a1) exp(−Φ(u, a) + Φ(u1, a1)) exp(−Φ(u1, a1))µ0(du)ν0(da)∫
Bδ(u2,a2) exp(−Φ(u, a) + Φ(u2, a2)) exp(−Φ(u2, a2))µ0(du)ν0(da)

.

Using Assumptions 2.4.1(iv), we have that for any (u, a), (v, b) ∈ X × Λ,

|Φ(u, a)− Φ(v, b)| ≤M3(r, a)‖u− v‖X + |Φ(v, a)− Φ(v, b)|

where r > max{‖u‖X , ‖v‖X}. Now set

L1 = max
|a|<|a1|+δ

M3(‖u1‖X + δ, a),

L2 = max
|a|<|a2|+δ

M3(‖u2‖X + δ, a),

which are finite due to the continuity assumption on M3. Then

J δ(u1, a1)

J δ(u2, a2)
≤ eδ(L1+L2)e−Φ(u1,a1)+Φ(u2,a2))

×
∫
Bδ(u1,a1) exp(|Φ(u1, a)− Φ(u1, a1)|)µ0(du)ν0(da)∫
Bδ(u2,a2) exp(−|Φ(u2, a)− Φ(u2, a2)|)µ0(du)ν0(da)

.

Note that both integrands are continuous in a, and so we may use the previous
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lemma. Taking lim supδ↓0 of both sides gives

lim sup
δ↓0

J δ(u1, a1)

J δ(u2, a2)
≤ e−I(u1,a1)+I(u2,a2).

A similar method gives that the lim infδ↓0 is bounded below by the RHS and so we

have that for any (u1, a2), (u2, a2) ∈ E × int(S),

lim
δ↓0

J δ(u1, a1)

J δ(u2, a2)
= eI(u2,a2)−I(u1,a1).

Noting that I is continuous on E×S, we see that I agrees with the Onsager-Machlup

functional on E×S. Finally note that I(u, a) =∞ on (X\E)×Λ and E×(Λ\S).

Remark 2.8.4. Note that the limit above is independent of the choice of norm used

on the product space X ×Λ when referring to the balls. If we use the norm given by

‖(x, a)‖ = max{‖x‖X , |a|}

then we have that

Bδ(u, a) = Bδ(u)×Bδ(a)

and so may deduce that, for any choice of norm on X × Λ,

lim
δ↓0

(µ0 × ν0)(Bδ(u1, a1))

(µ0 × ν0)(Bδ(u2, a2))
= lim

δ↓0

(µ0 × ν0)(Bδ(u1)×Bδ(a1))

(µ0 × ν0)(Bδ(u2)×Bδ(a2))

= lim
δ↓0

µ0(Bδ(u1))

µ0(Bδ(u2))
· ν0(Bδ(a1))

ν0(Bδ(a2))
.

This will be useful later for separating integrals.

Proof of Theorem 2.5.2. We follow the idea of the proof of Theorem 5.4 in [131],

which is based on [36] and [79], and first show I = Φ + J + K is weakly lower

semicontinuous on E × S. Let (un, an) ⇀ (ū, ā) in E × S. Since S ⊆ Rk, weak

convergence of the second component is equivalent to strong convergence. Since

µ0(X) = 1, E is compactly embedded in X and so un → ū strongly in X. In the

proof of existence of the posterior distribution we showed that Φ is continuous on

X×Λ, and so we deduce that Φ(un, an)→ Φ(u, a). Hence Φ is weakly continuous on

E × S. The functional J is weakly lower semicontinuous on E and K is continuous

on S, and so I is weakly lower semicontinuous on E × S.
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Now we show I is coercive on E × S. Since E is compactly embedded in X there

exists a C > 0 such that

‖u‖2X ≤ C‖u‖2E .

Therefore by Assumption 2.4.1(i) it follows that, for any ε > 0, there is an M(ε) ∈ R
such that

I(u, a) ≥M(ε) +

(
1

2
− Cε

)
‖u‖2E +K(a).

Since K is bounded below2 by − log ‖ρ‖∞, we may incorporate this into the constant

term M(ε):

I(u, a) ≥ M̃(ε) +

(
1

2
− Cε

)
‖u‖2E .

By choosing ε = 1/4C, we see that there is an M ∈ R such that, for all (u, a) ∈ E×S,

I(u, a) ≥ 1

4
‖u‖2E +M

which establishes coercivity.

Now take a minimizing sequence (un, an) such that for any δ > 0 there exists an

N1 = N1(δ) such that

M ≤ Ī ≤ I(un, an) ≤ Ī + δ, ∀n ≥ N1.

From the coercivity it can be seen that the sequence (un, an) is bounded in E × S.

Since E × S is a closed subset of a Hilbert space, there exists (ū, ā) ∈ E × S such

that (possibly along a subsequence) (un, an) ⇀ (ū, ā) in E×S. From the weak lower

semicontinuity of I it follows that, for any δ > 0,

Ī ≤ I(ū, ā) ≤ Ī + δ.

Since δ is arbitrary the first result follows.

Now consider the subsequence (un, an) ⇀ (ū, ā). The convergence of an → ā is

strong, so all that needs to be checked is that un → ū strongly in X. This follows

from exactly the same argument as in the proof of Theorem 5.4 in [131] (taking ā

2Recall in subsection 2.3.3 we assumed ρ to be continuous on the compact set S, and hence
bounded.
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as the second parameter in I and Φ) and so the second result follows.

Before proving Theorem 2.5.3 we first collect some results on centred Gaussian

measures from [38], specifically Lemmas 3.6, 3.7, and 3.9. For u ∈ X, let

J δ0 (u) = µ0(Bδ(u)).

Proposition 2.8.5. (i) Let δ > 0 and u ∈ X. Then we have

J δ0 (u)

J δ0 (0)
≤ ce−

a1
2

(‖u‖X−δ)2

where c = exp
(
a1
2 δ

2
)

and a1 is a constant independent of z and δ.

(ii) Suppose that ū /∈ E, (uδ)δ>0 ⊆ X and uδ converges weakly to ū ∈ X as δ ↓ 0.

Then for any ε > 0 there exists δ small enough such that

J δ0 (uδ)

J δ0 (0)
< ε.

(iii) Consider (uδ)δ>0 ⊆ X and suppose that uδ converges weakly and not strongly

to 0 in X as δ ↓ 0. Then for any ε > 0 there exists δ small enough such that

J δ0 (uδ)

J δ0 (0)
< ε.

Proof of Theorem 2.5.3. (i) We first show (uδ, aδ) is bounded in X × Λ. The

boundedness of the second component is clear since S is bounded, so it suffices

to show that (uδ) is bounded in X. This is proved in the same way as in

Theorem 3.5 in [38].

In the proof of existence of the posterior measure, Theorem 2.4.2, we show that

if r > 0 and ‖u‖X , |a| < r, then there existsK(r) > 0 such that Φ(u, a) ≤ K(r).

Letting c = eMe−K(1) > 0, it follows in the same was as [38] that, given any

a ∈ S, for δ < 1 we have

J δ0 (uδ, a) ≥ cJ δ0 (0, a).

Suppose that (uδ) is not bounded in X so that for any R > 0 there exists δR

such that ‖uδR‖X > R, with δR → 0 as R → ∞. Then the above bound says
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that

J δ0 (uδ, a)

J δ0 (0, a)
=
µ0(Bδ(uδ))

µ0(Bδ(0))
· ν0(Bδ(a))

ν0(Bδ(a))
≥ c.

This contradicts Proposition 2.8.5(i) above. Therefore there exists R, δR > 0

such that

‖(uδ, aδ)‖X×Λ ≤ R for any δ < δR.

Hence there exist (ū, ā) ∈ X × Λ and a subsequence of (uδ, aδ)0<δ<δR which

converges weakly in X×Λ to (ū, ā) as δ ↓ 0. For simplicity of notation we still

call this subsequence (uδ, aδ).

We now show that (uδ, aδ) converges strongly to an element of E×S. We first

show that (ū, ā) ∈ X × S.

Note that any limit point of aδ must lie in S. Suppose it did not, and a limit

point was a∗ /∈ S. Then there exists δ† > 0 such that along a subsequence

converging to a∗, δ < δ† implies aδ /∈ S since S is closed. For δ < 1
2dist(a∗, S)∧

δ† we then have Bδ(aδ) ∩ S = ∅. In particular ν0(Bδ(aδ)) = 0 for all such δ,

which in turn implies J δ(u, aδ) = 0 for any u ∈ X contradicting the definition

of aδ. It follows that we must have ā ∈ S.

We need to show ū ∈ E. From the definition of (uδ, aδ) and the bounds on Φ

we have for δ small enough and some3 α close to 1,

1 ≤ J
δ(uδ, 0)

J δ(0, 0)
≤ α

e−M
∫
Bδ(uδ) µ0(du)

∫
Bδ(0) ν0(da)

e−K(1)
∫
Bδ(0) µ0(du)

∫
Bδ(0) ν0(da)

= αeK(1)−M

∫
Bδ(uδ) µ0(du)∫
Bδ(0) µ0(du)

.

We use Proposition 2.8.5(ii). Supposing ū /∈ E, for any ε > 0 there exists δ

small enough such that ∫
Bδ(uδ) µ0(du)∫
Bδ(0) µ0(du)

< ε.

We may choose ε = 1
2αe

M−K(1) to deduce that there exists δ small enough

3Remark 2.8.4 tells us that we can separate the integrals in the limit δ ↓ 0.
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such that

1 ≤ J
δ(uδ, 0)

J δ(0, 0)
<

1

2

which is a contradiction, and so ū ∈ E.

Knowing that (ū, ā) ∈ E×S we now show that the convergence is strong. Any

convergence of the second component will be strong and so we just need to

show that uδ → ū strongly in X. Suppose the convergence is not strong, then

we may use Proposition 2.8.5(iii) on the sequence uδ − ū. The same choice

of ε as above leads to the same contradiction, and so we deduce that ū → ū

strongly in X and the first result is proved.

(ii) We now show that (ū, ā) is a MAP estimator and minimizes I. As in [38], and

the proof of Theorem 2.5.1, we can use Assumptions 2.4.1(iii) to see that

J δ(uδ, aδ)
J δ(ū, ā)

≤ eδ(L1+L2)e−Φ(uδ,aδ)+Φ(ū,ā))

×
∫
Bδ(uδ,aδ) exp(|Φ(uδ, a)− Φ(uδ, aδ)|)µ0(du)ν0(da)∫
Bδ(ū,ā) exp(−|Φ(ū, a)− Φ(ū, ā)|)µ0(du)ν0(da)

where

L1 = max
|a|≤|a1|+δ

M3(‖uδ‖X + δ, a),

L2 = max
|a|≤|a2|+δ

M3(‖ū‖X + δ, a).

Therefore using the continuity of Φ, as shown in the proof of existence of the

posterior distribution, and that (uδ, aδ)→ (ū, ā) strongly in X × Λ,

lim sup
δ↓0

J δ(uδ, aδ)
J δ(ū, ā)

≤ lim sup
δ↓0

∫
Bδ(uδ,aδ) µ0(du)ν0(da)∫
Bδ(ū,ā) µ0(du)ν0(da)

.

Suppose uδ is not bounded in E, or if it is, it only converges weakly (and not

strongly) in E. Then ‖ū‖E < lim infδ↓0 ‖uδ‖E , and hence for small enough δ,
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‖ū‖E < ‖uδ‖E . Therefore, since µ0 is centered and ‖uδ−ū‖X → 0, |aδ−ā| → 0,

lim sup
δ↓0

∫
Bδ(uδ,aδ) µ0(du)ν0(da)∫
Bδ(ū,ā) µ0(du)ν0(da)

= lim sup
δ↓0

∫
Bδ(uδ) µ0(du)

∫
Bδ(aδ) ν0(da)∫

Bδ(ū) µ0(du)
∫
Bδ(ā) ν0(da)

≤ lim sup
δ↓0

∫
Bδ(uδ) µ0(du)∫
Bδ(ū) µ0(du)

· lim sup
δ↓0

∫
Bδ(aδ) ν0(da)∫
Bδ(ā) ν0(da)

≤ lim sup
δ↓0

∫
Bδ(aδ) ν0(da)∫
Bδ(ā) ν0(da)

= lim sup
δ↓0

1
|Bδ(aδ)|

∫
Bδ(aδ) ρ(a) da

1
|Bδ(ā)|

∫
Bδ(ā) ρ(a) da

= 1.

The final equality above follows from the continuity of the integrand and the

fact that |aδ − ā| → 0: both the numerator and the denominator tend to ρ(ā).

Since by definition of (uδ, aδ), J δ(uδ, aδ) ≥ J δ(ū, ā) and hence

lim inf
δ↓0

J δ(uδ, aδ)
J δ(ū, ā)

≥ 1,

this implies that

lim
δ↓0

J δ(uδ, aδ)
J δ(ū, ā)

= 1. (2.8.3)

In the case where (uδ) converges strongly to ū in E, we see from the proof of

Lemma 2.8.2 that we have

e
1
2
‖ū‖2E−

1
2
‖uδ‖2E−Mδ (µ0 × ν0)(Bδ(0, aδ))

(µ0 × ν0)(Bδ(0, ā))
≤ (µ0 × ν0)(Bδ(uδ, aδ))

(µ0 × ν0)(Bδ(ū, ā))

≤ e 1
2
‖ū‖2E−

1
2
‖uδ‖2E+Mδ (µ0 × ν0)(Bδ(0, aδ))

(µ0 × ν0)(Bδ(0, ā))
.

Since we have uδ → ū strongly in E we have in particular that ‖uδ‖E → ‖ū‖E .

It follows that e
1
2
‖ū‖2E−

1
2
‖uδ‖2E±Mδ → 1 as δ ↓ 0. Now using the continuity of

ρ and the fact that |aδ − ā| → 0, an argument similar to that in the proof of

Lemma 2.8.2 shows that

lim
δ↓0

(µ0 × ν0)(Bδ(0, aδ)

(µ0 × ν0)(Bδ(0, ā))
= 1.
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We therefore deduce that

lim
δ↓0

∫
Bδ(uδ,aδ) µ0(du)ν0(da)∫
Bδ(ū,ā) µ0(du)ν0(da)

= 1

and (2.8.3) follows again. Therefore (ū, ā) is a MAP estimator of the measure

µ.

The proof that (ū, ā) minimizes I is identical to that in the proof of Theorem

3.5 in [38].
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Chapter 3

The Bayesian Formulation of

EIT

3.1 Introduction

3.1.1 Background

Electrical Impedance Tomography (EIT) is an imaging technique in which the con-

ductivity of a body is inferred from electrode measurements on its surface. Examples

include medical imaging, where the methodology is used to non-invasively detect ab-

normal tissue within a patient, and subsurface imaging where material properties of

the subsurface are determined from surface (or occasional interior) measurements of

the electrical response; the methodology is often referred to as electrical resistance

tomography – ERT – in this context and discussed in more detail below. The concept

of EIT appears as early as the late 1970’s [66] and ERT the 1930’s [90].

A very influential mathematical formulation of the inverse problem associated with

EIT dates back to 1980, due to Calderón. He formulated an abstract version of the

problem, in which the objective is recovery of the coefficient of a divergence form el-

liptic PDE from knowledge of its Neumann-to-Dirichlet or Dirichlet-to-Neumann op-

erator. Specifically, in the Dirichlet-to-Neumann case, if D ⊆ Rd and g ∈ H1/2(∂D)

is given, let u ∈ H1(D) solve−∇ · (σ∇u) = 0 in D

u = g on ∂D.
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The problem of interest is then to ask does the mapping Λσ : H1/2(∂D)→ H−1/2(∂D)

given by

g 7→ σ
∂u

∂ν

determine the coefficient σ? Physically, g corresponds to boundary voltage measure-

ments, and Λσ(g) corresponds to the current density on the boundary. Much study

has been carried out on this problem – some significant results, in the case where

all conductivities are in C2(D) and d ≥ 3, concern uniqueness [132], reconstruc-

tion [105], stability [6] and partial data [77]. Details of these results are summarized

in [122].

In 1996, Nachman proved global uniqueness and provided a reconstruction procedure

for the case d = 2, involving the use of a scattering transform and solving a D-bar

problem [106]. The D-bar equation involved is a differential equation of the form

∂q = f , where ∂ denotes the conjugate of the complex derivative and f depends on

the scattering transform. A regularized D-bar approach, involving the truncation of

the scattering transform, was provided in [82, 83], enabling the recovery of features

of discontinuous permeabilities. The regularized D-bar approach is also used in [84],

for the case when the data is not of infinite precision. Other work in the area

includes joint inference of the shape of the domain and conductivity [86].

For applications, a more physically appropriate model for EIT was provided in 1992

in [128]. This model, referred to as the complete electrode model (CEM), replaces

complete boundary potential measurements with measurements of constant poten-

tial along electrodes on the boundary, subject to contact impedances. The authors

show that predictions from this model agree with experimental measurements up

to the measurement precision of 0.1%. For this model they also prove existence

and uniqueness of the associated electric potential. It is this model that we shall

consider in this chapter, and it is outlined in section 3.2.

When using the CEM, there is a limitation on the number of measurements that

can be taken to provide additional information due to the linear relationship be-

tween current and potential. The data is therefore finite dimensional in the inverse

problem, as distinct from the Calderón problem where knowledge of an infinite di-

mensional operator is assumed. As a consequence, reconstruction using the CEM

often makes use of Tikhonov regularisation. The paper [52] analyses numerical con-

vergence when an H1 or TV penalty term is used, with a finite element discretisation

of the problem. We will adopt a Bayesian approach to regularisation, and this is

discussed below.
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A closely related problem to EIT is Electrical Resistivity Tomography (ERT), which

concerns subsurface inference from surface potential measurements, see for example

[90] which discussed the problem as early as 1933. Physically the main difference

between EIT and ERT is that alternating current is typically used for the former,

and direct current for the latter. Additionally, due to the scale of ERT, it is a

reasonable approximation to model the electrodes as points, rather than using the

CEM. Another difference between the two is that the relative contrast between

the conductivities of different media are typically higher in subsurface applications

than medical applications, which permits the approximation of the problem by a

network of resistors in some cases [116]. Nonetheless, the Bayesian theory and

MCMC methodology introduced here will be useful for the ERT problem as well as

the EIT problem.

Statistical, in particular Bayesian, approaches to EIT inversion have previously been

studied, for example in [73, 74, 93]. In [73], the authors prove certain regularity of

the forward map associated with the CEM, formulate the Bayesian inverse problem

in terms of the discretized model, and investigate the effect of different priors on

reconstruction and behaviour of the posterior. The paper [93] focuses on Whittle-

Matèrn priors, using EIT and ERT as examples for numerical simulation. The

paper [74] presents a regularized version of the inverse problem, which admits a

Bayesian interpretation.

The Bayesian approach to inverse problems, especially in infinite dimensions, is

a relatively new technique. Two approaches are typically taken: discretize first

and use finite dimensional Bayesian techniques, or apply the Bayesian methodology

directly on function space prior to discretizing. The former approach is outlined

in [75]. The latter approach for linear problems has been studied in [50, 96, 101].

More recently, this approach has been applied to nonlinear problems [39,91,92,131].

It is this approach that we will be taking in this chapter.

3.1.2 Our Contribution

The main contributions of this chapter are as follows:

(i) This is the first rigorous Bayesian formulation of EIT given in infinite dimen-

sions.

(ii) We employ a variety of prior models, based on the assumption that the underly-

ing conductivity we wish to recover is binary. We initially look at log-Gaussian
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priors, before focusing on priors which enforce the binary field property. These

binary field priors include both single star-shaped inclusions parametrized by

their centre and by a radial function [22], and arbitrary geometric interfaces

between the two conductivity values defined via level set functions [72].

(iii) This setting leads to proof that the posterior measure is Lipschitz in the data,

with respect to the Hellinger metric, for all three priors studied; further stabil-

ity properties of the posterior with respect to perturbations, such as numerical

approximation of the forward model, may be proved similarly.

(iv) Numerical results using state of the art MCMC demonstrate the importance

of the prior choice for accurate reconstruction in the severely underdetermined

inverse problems arising in EIT.

3.1.3 Organisation of the Chapter

In section 3.2 we describe the forward map associated with the EIT problem, and

prove relevant regularity properties. In section 3.3 we formulate the inverse problem

rigorously and describe our three prior models. We then prove existence and well-

posedness of the posterior distribution for each of these choices of prior. In section

3.4 we present results of numerical MCMC simulations to investigate the effect of

the choice of prior on the recovery of certain binary conductivity fields. We conclude

in section 3.5.

3.2 The Forward Model

In subsection 3.2.1 we describe the complete electrode model for EIT as given

in [128]. In subsection 3.2.2 we give the weak formulation of this model, stating

assumptions required for the quoted existence and uniqueness result. Then in sub-

section 3.2.3 we define the forward map in terms of this model, and prove that this

map is continuous with respect to both uniform convergence and convergence in

measure.

3.2.1 Problem Statement

Let D ⊆ Rd, d ≤ 3, be a bounded open set representing a body, with conductivity

σ : D → R. A number L of electrodes are attached to the surface of the body. We
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treat these as subsets (el)
L
l=1 of the boundary ∂D, and assume that they have contact

impedances (zl)
L
l=1 ∈ RL. A current stimulation pattern (Il)

L
l=1 ∈ RL is applied

to the electrodes. Then the electric potential v within the body and boundary

voltages (Vl)
L
l=1 ∈ RL on (el)

L
l=1 are modelled by the following partial differential

equation.



−∇ · (σ(x)∇v(x)) = 0 x ∈ D∫
el

σ
∂v

∂n
dS = Il l = 1, . . . , L

σ(x)
∂v

∂n
(x) = 0 x ∈ ∂D \⋃L

l=1 el

v(x) + zlσ(x)
∂v

∂n
(x) = Vl x ∈ el, l = 1, . . . , L

(3.2.1)

This model was first proposed in [128]; a derivation can be found therein. Note

that the inputs to this forward model are the conductivity σ, input current (Il)
L
l=1

and contact impedances (zl)
L
l=1. The solution comprises the function v : D → R

and the vector V ∈ RL of voltages. Also note that solutions to this equation are

only defined up to addition of a constant: if (v, V ) solves the equation, then so does

(v + c, V + c) for any c ∈ R. This is because it is necessary to choose a reference

ground voltage.

D

el

Figure 3.1: An example domain D with electrodes (el)
L
l=1 attached to its boundary.
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3.2.2 Weak Formulation

We first define the space in which the solution to equation (3.2.1) will live. Using

the notation of [128] we set

H = H1(D)⊕ RL,

‖(v, V )‖2H = ‖v‖2H1(D) + ‖V ‖2`2
= ‖v‖2L2(D) + ‖∇v‖2L2(D) + ‖V ‖2`2 .

Since solutions are only defined up to addition of a constant, we define the quotient

space (Ḣ, ‖ · ‖Ḣ) by

Ḣ = H/R,

‖(v, V )‖Ḣ = inf
c∈R
‖(v − c, V − c)‖H.

We will often use the notation v′ = (v, V ) for brevity. It is more convenient to equip

Ḣ with an equivalent norm, as stated in the following lemma from [128]:

Lemma 3.2.1. Define ‖v′‖∗ by

‖v′‖2∗ = ‖∇v‖2L2(D) +
L∑
l=1

∫
el

|v(x)− Vl|2 dS.

Then ‖ · ‖∗ and ‖ · ‖Ḣ are equivalent.

We can now state the weak formulation of the problem as derived in [128]. For this

let w′ = (w,W ).

Proposition 3.2.2. Let B : Ḣ× Ḣ→ R and r : Ḣ→ R be defined by

B(v′, w′;σ) =

∫
D
σ∇v · ∇w dx+

L∑
l=1

1

zl

∫
el

(v − Vl)(w −Wl) dS,

r(w′) =
L∑
l=1

IlWl.

Then if v′ ∈ Ḣ is a strong solution to the problem (3.2.1), it satisfies

B(v′, w′;σ) = r(w′) for all w′ ∈ Ḣ. (3.2.2)

We will use the weak formulation (3.2.2) to define our forward map for the complete
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electrode model (3.2.1). In order to guarantee a solution to this problem, we make

the following assumptions.

Assumptions 3.2.3. The conductivity σ : D → R, the contact impedances (zl)
L
l=1 ∈

RL and the current stimulation pattern (Il)
L
l=1 ∈ RL satisfy

(i) σ ∈ L∞(D;R), essinf
x∈D

σ(x) = σ− > 0;

(ii) 0 < z− ≤ zl ≤ z+ <∞, l = 1, . . . , L;

(iii)

L∑
l=1

Il = 0.

Under these assumptions, existence of a unique solution to (3.2.2) is proved in [128]

and stated here for convenience:

Proposition 3.2.4. Let Assumptions 3.2.3 hold, then there is a unique [(v, V )] ∈ Ḣ
solving (3.2.2). We may, without loss of generality, choose the element (v, V ) ∈
[(v, V )] of the equivalence class of solutions to be that which satisfies

L∑
l=1

Vl = 0. (3.2.3)

Remark 3.2.5. Assumptions 3.2.3 (i) and (ii) are to ensure coercivity and bound-

edness of B(·, ·;σ). Assumption 3.2.3 (iii) is necessary for continuity of r(·), and

physically may be thought of as a conservation of charge condition. Choosing a so-

lution from the equivalence class corresponds to choosing a reference ground voltage.

3.2.3 Continuity of the Forward Map

In what follows we will restrict to the set of admissible conductivities, which is

defined as follows.

Definition 3.2.6. A conductivity field σ : D → R is said to be admissible if

(i) there exists N ∈ N, {Dn}Nn=1 open disjoint subsets of D for which D =⋃N
n=1Dj;

(ii) σ
∣∣
Dj
∈ C(Dj); and

(iii) there exist σ−, σ+ ∈ (0,∞) such that σ− ≤ σ(x) ≤ σ+ for all x ∈ D.

The set of all such conductivities will be denoted A(D).
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Note that any σ ∈ A(D) will satisfy Assumptions 3.2.3(i). Assume that the cur-

rent stimulation pattern (Il)
L
l=1 ∈ RL and contact impedances (zl)

L
l=1 ∈ RL are

known and satisfy Assumptions 3.2.3(ii)-(iii). Then we may define the solution map

M : A(D) → H to be the unique solution to (3.2.2) satisfying (3.2.3). The above

existence and uniqueness result tells us that this map is well-defined.

In [73] it is shown that M : A(D) → H is Fréchet differentiable when we equip

A(D) with the supremum norm. Though this is a strong result, this choice of

norm is not appropriate for all of the conductivities that we will be considering.

More specifically, as we are mainly interested in binary conductivities, any two

conductivities with different interfaces separating the phases will be regarded as a

constant distance from one another in the supremum norm, regardless of how little

the interfaces differ.

We hence establish the following continuity result.

Proposition 3.2.7. Fix a current stimulation pattern (Il)
L
l=1 ∈ RL and contact

impedances (zl)
L
l=1 ∈ RL satisfying Assumptions 3.2.3. Define the solution map

M : A(D)→ H as above. Let σ ∈ A(D) and let (σε)ε>0 ⊆ A(D) be such that either

(i) σε converges to σ uniformly; or

(ii) σε converges to σ in measure, and there exist σ−, σ+ ∈ (0,∞) such that for all

ε > 0 and x ∈ D, σ− ≤ σε(x) ≤ σ+.

Then ‖M(σε)−M(σ)‖∗ → 0.

Proof. Define the maps B : H×H×A(D)→ R and r : H→ R as in Lemma 3.2.2, but

on H rather than Ḣ. Then denoting u′ε = (vε, V
ε) =M(σε) and v′ = (v, V ) =M(σ),

we have for all w′ ∈ H,

B(v′ε, w
′;σε) = r(w′), B(v′, w′;σ) = r(w′).

It follows that

0 = B(v′ε, w
′;σε)−B(v′, w′;σε) +B(v′, w′;σε)−B(v′, w′;σ)

=

∫
D
σε∇(vε − v) · ∇w dx+

L∑
l=1

1

zl

∫
el

((vε − v)− (V ε
l − Vl))(w −Wl) dS

+

∫
D

(σε − σ)∇v · ∇w dx.
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Letting w′ = (vε − v, V ε − V ), we see that

∫
D
σε|∇(vε − v)|2 dx+

L∑
l=1

1

zl

∫
el

((vε − v)− (V ε
l − Vl))2 dS

≤
∫
D
|σε − σ||∇v · ∇(vε − v)| dx.

In both cases (i) and (ii), we have that (σε)ε>0 is bounded uniformly below by

a positive constant. Hence for small enough ε, the left hand side above may be

bounded below by C‖v′ε − v′‖2∗. We then have by Cauchy-Schwarz

‖v′ε − v′‖2∗ ≤ C
∫
D
|σε − σ||∇v · ∇(vε − v)|dx

≤ C
(∫

D
|σε − σ|2|∇v|2 dx

)1/2

· ‖∇(vε − v)‖L2

≤ C
(∫

D
|σε − σ|2|∇v|2 dx

)1/2

· ‖v′ε − v′‖∗ (3.2.4)

≤ C‖σε − σ‖∞‖∇v‖L2‖v′ε − v′‖∗. (3.2.5)

If σε → σ uniformly, we deduce from (3.2.5) that ‖v′ε − v′‖∗ → 0 and the result

follows. If |σε−σ| → 0 in measure, then since |D| <∞, it follows that the integrand

in (3.2.4) tends to zero in measure, see for example Corollary 2.2.6 in [17]. Since σε

is assumed to be uniformly bounded, the integrand is dominated by a scalar multiple

of the integrable function |∇v|2. We claim that this implies that the integrand tends

to zero in L1. Suppose not, and denote the integrand fε. Then there exists δ > 0

and a subsequence (fεi)i≥1 such that ‖fεi‖L1 ≥ δ for all i. This subsequence still

converges to zero in measure, and so admits a further subsequence that converges to

zero almost surely. An application of the dominated convergence theorem leads to a

contradiction, hence we deduce that fε tends to zero in L1 and the result follows.

Denote the projection Π : H → RL, (v, V ) 7→ V . The following lemma shows that

the above result still holds if we replace M by Π ◦M.

Corollary 3.2.8. Let the assumptions of Proposition 3.2.7 hold. Then

|Π ◦M(σε)−Π ◦M(σ)|`2 → 0.

Proof. We show that there exists C > 0 such that for all (v, V ) ∈ H with
∑L

l=1 Vl =
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0, ‖(v, V )‖∗ ≥ C|V |`2 . By the equivalence of ‖ · ‖∗ and ‖ · ‖Ḣ, Lemma 3.2.1, we have

‖(v, V )‖∗ ≥ C inf
c∈R

(‖v − c‖H1 + |V − c|`2) ≥ C inf
c∈R
|V − c|`2

The infimum on the right-hand side is attained at

c =
1

L

L∑
l=1

Vl = 0.

Then by Proposition 3.2.7, we have

0 ≤ |Π ◦M(σε)−Π ◦M(σ)|`2 ≤ ‖M(σε)−M(σ)‖∗ → 0

3.3 The Inverse Problem

We are interested in the inverse problem of determining the conductivity field from

measurements of the voltages (Vl)
L
l=1 on the boundary, for a variety of input currents

(Il)
L
l=1 on the boundary. To this end we introduce the following version of Ohm’s

law. Observe that the mapping I 7→ v′, taking the current stimulation pattern to the

solution of (3.2.2), is linear. Then given a conductivity field σ ∈ A(D), there exists

a resistivity matrix R(σ) ∈ RL×L such that the boundary voltage measurements

V (σ) arising from the solution of the forward model are related to I via

V (σ) = R(σ)I

By applying several different current stimulation patterns we should be able to infer

more about the conductivity σ. Note however that since the mapping I 7→ V is lin-

ear, only linearly independent stimulation patterns will provide more information1.

Since we have the conservation of charge condition on I, there are at most L − 1

linearly independent patterns we can use.

Assume that J linearly independent current patterns I(j) ∈ RL, j = 1, . . . , J , J ≤
1If there is noise on the measurements, additional linearly dependent observations can be made

to effectively reduce the noise level on the original measurements. We can assume that this has
been done and scale the noise appropriately.
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L− 1 are applied, and noisy measurements of V (j) = R(σ)I(j) are made:

yj = V (j) + ηj , ηj ∼ N(0,Γ0) iid.

We have

yj = Gj(σ) + ηj

where Gj(σ) = R(σ)I(j). Concatenating these observations, we write

y = G(σ) + η, η ∼ N(0,Γ)

where Γ = diag(Γ0, . . . ,Γ0). The inverse problem is then to recover the conduc-

tivity field σ from the data y. This problem is highly ill-posed: the data is finite

dimensional, yet we wish to recover a function which, typically, lies in an infinite

dimensional space. We take a Bayesian approach by placing a prior distribution on

σ. The choice of prior may have significant effect on the resulting posterior distri-

bution, and different choices of prior may be more appropriate depending upon the

prior knowledge of the particular experimental set-up under consideration.

In subsection 3.3.1 we outline three different families of prior models, and show the

appropriate regularity of the forward maps arising from them. In subsection 3.3.2 we

describe the likelihood and posterior distribution formally, before rigorously proving

that the posterior distribution exists and is Lipschitz with respect to the data in the

Hellinger metric.

3.3.1 Choices of Prior

In this section we consider three priors, labelled by i = 1, 2, 3, defined by functions

Fi : Xi → A(D) which map draws from prior measures on the Banach spaces Xi to

the space of conductivities A(D). Our prior conductivity distributions will then be

the pushfoward of the prior measures by these maps Fi. We describe these maps,

and establish continuity properties of them needed for the study of the posterior

later.

Log-Gaussian prior

We first consider the simple case that the coefficient is given by the exponential

of a continuous function. Let F1 : C0(D) → A(D) be defined by F1(u) = exp(u).

Then it is easily seen that F1 does indeed map into A(D). Furthermore, since D is
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Figure 3.2: Example draws from log-Gaussian priors defined in Example 3.3.1.

bounded, if u ∈ C0(D) and (uε)ε>0 ⊆ C0(D) is a sequence such that ‖uε−u‖∞ → 0,

then ‖F1(uε)− F1(u)‖∞ → 0.

In this case, we will take our prior measure µ0 on u to be a Gaussian measure

N(m0, C0) on C0(D). Note that the push forward of a Gaussian measure by F1 is a

log-Gaussian measure.

Example 3.3.1. Consider the case D = B(0, 1) ⊆ R2. Suppose that u is drawn

from a Gaussian measure µ0 = N(0, C). Typical samples from F#
1 (µ0) are shown

in Figure 3.22. The covariance C is chosen such that the samples u almost surely

have regularity u ∈ Hs(D) for all s < t, where from left to right t = 2, 1.5, 1, 0.5

respectively. Here the samples are generated on [−1, 1]2 ⊇ D and then restricted to

D, for computational simplicity.

Star-shaped prior

We now consider star-shaped inclusions, that is, inclusions parametrized by their

centre and a radial function. These were studied in two-dimensions in the paper [22]

to parametrize domains for a Bayesian inverse shape scattering problem. In [22] the

authors prove well-posedness of the inverse problem in an infinite dimensional setting

through the use of shape derivatives and Riesz-Fredholm theory.

Let D ⊆ Rd, and Rd−1 = (−π, π] × [0, π]d−2 ⊆ Rd−1. Let h : Rd → Rd−1 be

the continuous function representing the mapping from Cartesian to angular polar

coordinates. Define the mapping A : C0
P (Rd−1)×D → B(D) by

A(r, x0) =
{
x ∈ D

∣∣ |x− x0| ≤ r(h(x− x0))
}

2Given a measure µ on (X,X ) and a measurable map F : (X,X )→ (Y,Y) between measurable
spaces, F#(µ) denotes the pushforward of µ by F , i.e. the measure on (Y,Y) given by F#(µ)(A) =
µ(F−1(A)) for all A ∈ Y.
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where C0
P (Rd−1) is the space of continuous periodic functions on Rd−1. Then

A(r, x0) describes the set of points inD which lie within the closed surface parametrized

in polar coordinates centred at x0 by

Γ(Θ) = (Θ, r(Θ)), Θ ∈ Rd−1.

In two dimensions, we have R1 = (−π, π] and the mapping h : R2 → R1 is given

by

h(x, y) = atan2(y, x) ≡ 2 arctan

(
y√

x2 + y2 + x

)
where atan2 is the two-parameter inverse tangent function.

In three dimensions, we have R2 = (−π, π]× [0, π] and the mapping h : R3 → R2 is

given by

h(x, y, z) =

(
atan2(y, x), arccot

(
z√

x2 + y2

))
.

Similar expressions for h exist in higher dimensions, though for applications we are

only interested in the case d = 2, 3.

Define now the map F2 : C0
P (Rd−1)×D → A(D) by

F2(r, x0) = u+1A(r,x0) + u−1D\A(r,x0)

= (u+ − u−)1A(r,x0) + u−.

Again it can easily be seen that F2 does indeed map into A(D). We claim that this

map is continuous in the following sense:

Proposition 3.3.2. Define the map F2 : C0
P (Rd−1) × D → A(D) as above. Let

x0 ∈ D and let r ∈ C0
P (Rd−1) be Lipschitz continuous.

(i) Suppose that (rε)ε>0 ⊆ C0
P (Rd−1) is a sequence of functions such that

‖rε − r‖∞ → 0. Then F2(rε, x0)→ F2(r, x0) in measure3.

(ii) Suppose that (xε0)ε>0 ⊆ D is a sequence of points such that |xε0 − x0| → 0.

Then F2(r, xε0)→ F2(r, x0) in measure.

(iii) Let (rε)ε>0, (xε0)ε>0 be as above. Then F2(rε, x
ε
0)→ F2(r, x0) in measure.

3A sequence of functions (fε)ε>0, fε : D → R, is said to converge in measure to a function
f : D → R if for all δ > 0, |{x ∈ D | |fε(x) − f(x)| > δ}| → 0. Here |B| denotes the Lebesgue
measure of a set B ⊆ Rd.
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Proof. In order to show that a sequence of functions fε : D → R converges to

f : D → R in measure, it suffices to show that there exists a sequence of sets

Zε ⊆ D with |Zε| → 0 such that |fε − f | ≤ C1Zε . Then for each δ > 0 we have

|{x ∈ D | |fε(x)− f(x)| > δ}| ≤ |{x ∈ D | |fε(x)− f(x)| 6= 0}| ≤ |Zε| → 0.

(i) Fix the centre x0 ∈ D. Denote A(r) = A(r, x0). Let r ∈ C0
P (Rd−1) and let

(rε)ε>0 ⊆ C0
P (Rd−1) be a sequence of functions such that ‖rε−r‖∞ → 0. Then

there exists γ(ε)→ 0 such that ‖rε − r‖∞ < γ(ε). By definition we then have

r(x)− γ(ε) ≤ rε(x) ≤ r(x) + γ(ε) for all x ∈ D and ε > 0.

It follows that we have the inclusions

A(r − γ(ε)) ⊆ A(rε) ⊆ A(r + γ(ε)),

A(r − γ(ε)) ⊆ A(r) ⊆ A(r + γ(ε)).

Let ∆ denote the symmetric difference. We deduce that

A(rε)∆A(r) ⊆ A(r + γ(ε)) \A(r − γ(ε)).

Now the right-hand side is given by

A(r + γ(ε)) \A(r − γ(ε))

=
{
x ∈ D

∣∣ r(h(x− x0))− γ(ε) < |x− x0| ≤ r(h(x− x0)) + γ(ε)
}
.

As ε→ 0, this set decreases to the boundary set

∂A(r) =
{
x ∈ D

∣∣ |x− x0| = r(h(x− x0))
}
.

Since the graph of a continuous function has Lebesgue measure zero, we deduce

that |∂A(r)| = 0. It follows that

lim
ε→0
|A(rε)∆A(r)| = 0.

To conclude, note that

|F2(rε, x0)− F2(r, x0)| ≤ |u+ − u−||1A(rε) − 1A(rε)| = C1A(rε)∆A(r).
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(ii) Let r ∈ C0
P (Rd−1) be Lipschitz continuous. Denote A(x0) = A(r, x0). Let

(xε0) ⊆ D be a sequence of points such that |xε0 − x0| → 0. Note that we may

write

A(xε0) = {x ∈ D | |x− xε0| ≤ r(h(x− xε0))}
= {x ∈ Rd | |x− xε0| ≤ r(h(x− xε0))} ∩D
= ((xε0 − x0) + {x ∈ Rd | |x− x0| ≤ r(h(x− x0))}) ∩D
=: ((xε0 − x0) +A(x0)∗) ∩D.

By the distributivity of intersection over symmetric difference, we then have

that

A(xε0)∆A(x0) = [((xε0 − x0) +A(x0)∗) ∩D]∆[A(x0)∗ ∩D]

= [((xε0 − x0) +A(x0)∗)∆A(x0)∗] ∩D
⊆ ((xε0 − x0) +A(x0)∗)∆A(x0)∗.

Therefore, using Theorem 1 from [126], we see that

|A(xε0)∆A(x0)| ≤ |((xε0 − x0) +A(x0)∗)∆A(x0)∗|
≤ |xε0 − x0|Hd−1(∂A(x0)∗)

where Hd−1 is the (d − 1)-dimensional Hausdorff measure. Since we assume

that r is Lipschitz, the surface area Hd−1(∂A(x0)∗) of the boundary of A(x0)∗

is finite, and so it follows that

lim
ε→0
|A(xε0)∆A(x0)| = 0.

As before, we conclude by noting that

|F2(r, xε0)− F2(r, x0)| ≤ |u+ − u−||1A(xε0) − 1A(x0)| = C1A(xε0)∆A(x0).

(iii) We have that

|F2(rε, x
ε
0)− F2(r, x0)| ≤ |F2(rε, x

ε
0)− F2(r, xε0)|+ |F2(r, xε0)− F2(r, x0)|

≤ C(1A(rε,xε0)∆A(r,xε0) + 1A(r,xε0)∆A(r,x0))

≤ C1[A(rε,xε0)∆A(r,xε0)]∪[A(r,xε0)∆A(r,x0)].
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Now note that

|A(rε, y0)∆A(r, y0)| ≤ |A(rε, y0)∗∆A(r, y0)∗|.

The right hand-side is independent of y0 by translation invariance of the

Lebesgue measure. By the same argument as part (i) we conclude that it

tends to zero. We then have that

|[A(rε, x
ε
0)∆A(r, xε0)] ∪ [A(r, xε0)∆A(r, x0)]|

≤ |A(rε, x
ε
0)∆A(r, xε0)|+ |A(r, xε0)∆A(r, x0)|

≤ sup
y0∈D

|A(rε, y0)∆A(r, y0)|+ |A(r, xε0)∆A(r, x0)|

which tends to zero by the discussion above and part (ii).

Remark 3.3.3. Above we assumed that r : Rd−1 → R was Lipschitz continuous.

This assumption is only used in the proof of part (ii) of the proposition. If the centre

of the star-shaped region is known, this assumption may then be dropped to allow

for rougher boundaries.

We need to choose a prior measure µ0 on (r, x0). We assume that r and x0 are

independent under the prior so that we may factor µ0 = σ0 ⊗ τ0 where σ0 is a

measure on C0
P (Rd−1) and τ0 is a measure on D. We will assume that σ0 is such

that σ0(B) > 0 for all balls B ⊆ C0
P (Rd−1). We equip C0

P (Rd−1)×D with the norm

‖(r, x0)‖ = max{‖r‖∞, |x0|}.

Example 3.3.4. Consider the case D = B(0, 1) ⊆ R2. Suppose that r is drawn from

a log-Gaussian measure σ0 on C0
P ((−π, π]), and x0 is drawn from τ0 = U([−0.5, 0.5]2).

Note that [−0.5, 0.5]2 ⊆ B(0, 1). Typical samples from F#
2 (µ0) are shown in Figure

3.3. The covariance of σ0 is chosen such that the samples r almost surely have

regularity r ∈ Hs((−π, π]) for all s < t, where from left to right t = 2.5, 2, 1.5, 1

respectively.

Level set prior

We finally consider the case where the inclusions can be described by a single level

set function, as in [72]. A discussion of the use of level set functions in geometric

inversion is provided in the introduction of the next chapter. Let n ∈ N and fix
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Figure 3.3: Example draws from star-shaped priors defined in Example 3.3.4.

constants −∞ = c0 < c1 < . . . < cn = ∞. Given u : D → R, define Di ⊆ D

by

Di = {x ∈ D | ci−1 ≤ u(x) < ci}, i = 1, . . . , n

so that D =
⋃n
i=1Di and Di ∩ Dj = ∅ for i 6= j, i, j ≥ 1. Define also the level

sets

D0
i = Di ∩Di+1 = {x ∈ D |u(x) = ci}, i = 1, . . . , n− 1.

Now given strictly positive functions f1, . . . , fn ∈ C0(D), we define the map F3 :

C0(D)→ A(D) by

F3(u) =
n∑
i=1

fi1Di .

Since each f is continuous and strictly positive on a compact set D, they are uni-

formly bounded above and below by positive constants, and so F3 does indeed map

into A(D).

In this chapter we are primarily concerned with the case of binary fields, n = 2

and fi constant above, however the theory in proved in the general case. We have

the following result regarding continuity of this map, by the same arguments as

in [72].

Proposition 3.3.5. Define the map F3 : C0(D)→ A(D) as above. Let u ∈ C0(D)

be such that |D0
i | = 0 for i = 1, . . . , n − 1. Suppose that (uε)ε>0 ⊆ C0(D) is an

approximating sequence of functions so that ‖uε − u‖∞ → 0. Then F3(uε)→ F3(u)

in measure.

Proof. Denote by Di,ε and D0
i,ε the sets as defined above associated with the ap-
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proximating functions uε. We can write

F3(uε)− F3(u) =

n∑
i=1

n∑
j=1

(fi − fj)1Di,ε∩Dj =

n∑
i,j=1
i 6=j

(fi − fj)1Di,ε∩Dj .

Since ‖uε − u‖∞ → 0, there exists γ(ε)→ 0 with ‖uε − u‖∞ < γ(ε). Then we have

for all x ∈ D and ε > 0

u(x)− γ(ε) < uε(x) < u(x) + γ(ε).

Hence for |j − i| > 1 and ε sufficiently small, Di,ε ∩Dj = ∅. If |j − i| = 1, then

Di,ε ∩Di+1 ⊆ D̃i,ε := {x ∈ D | ci ≤ u(x) < ci + γ(ε)} → D0
i ,

Di,ε ∩Di−1 ⊆ D̂i−1,ε := {x ∈ D | ci − γ(ε) ≤ u(x) < ci} → ∅.

By the uniform boundedness of the (fi), for sufficiently small ε we can then write

|F3(uε)− F3(u)| ≤
n−1∑
i=1

|fi − fi+1|1D̃i,ε +
n∑
i=2

|fi − fi−1|1D̂i−1,ε

≤ C1Zε (3.3.1)

where Zε ⊆ D is given by

Zε =

(
n−1⋃
i=1

D̃i,ε

)
∪
(

n⋃
i=2

D̂i−1,ε

)
→

n−1⋃
i=1

D0
i .

By the assumption that |D0
i | = 0 for all i, it follows that |Zε| → 0, and so the result

follows from the comment at the start of the proof of Proposition 3.3.2.

Note that bound (3.3.1) actually above implies the slightly stronger result that,

when the ci-level sets of u ∈ X have zero measure, F3 is continuous into Lp(D),

1 ≤ p < ∞, at u. The assumption that the level sets have zero measure is an

important one, as illustrated by Figure 3.4: an arbitrarily small perturbation of u

can lead to an order 1 change in F3(u). To see this, note that function u in the right

hand figure of Figure 3.4 takes the value zero on a set of positive measure. If F3

thresholds u at zero, then the value of F3(u) on this set changes significantly as the

value of u on this set is perturbed above or below zero; such a perturbation can be

arbitrarily small in Lp.
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F3(·) is continuous at u F3(·) is discontinuous at u

Figure 3.4: The discontinuity of F3 into Lp(D).
.

Figure 3.5: Example draws from level set priors defined in Example 3.3.6.

In the Bayesian approach we are taking to this problem, we may choose a prior

measure on u such that, almost surely, the Lebesgue measure of the level sets is

zero. This is shown to hold for Gaussian measures in [72]. As a result, F3 will be

almost surely continuous under the prior, and this is enough to give the measurability

required in Bayes’ theorem, as shown in [72].

As in the log-Gaussian case, we take our prior measure µ0 on u to be a Gaussian

measure N(m0, C0) on C0(D).

Example 3.3.6. Consider the case D = B(0, 1) ⊆ R2, n = 2, c1 = 0, f1 ≡ 1 and

f2 ≡ 2. Suppose that u is drawn from a centred Gaussian measure µ0 = N(0, C)
on C0(D). Typical samples from F#

3 (µ0) are show in Figure 3.5. The covariance

C is chosen such that the samples u almost surely have regularity u ∈ Hs(D) for

all s < t, where from left to right t = 4, 3, 2, 1 respectively. As in the log-Gaussian

case, here the samples are generated on [−1, 1]2 ⊇ D and then restricted to D, for

computational simplicity.
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3.3.2 The Likelihood and Posterior Distribution

The inverse problem was introduced at the beginning of the section. Now that we

have introduced prior distributions, we may provide the Bayesian formulation of the

problem.

Let X be a separable Banach space and F : X → A(D) a map from the space

X where the unknown parameters live to the conductivity space. Choose a set of

current stimulation patterns I(j) ∈ RL, j = 1, . . . , J and letMj : A(D)→ H denote

the solution map when using stimulation pattern I(j). Recall the projection map

Π : H→ RL was defined by Π(v, V ) = V .

The data yj from the jth stimulation pattern is assumed to arise from the map

Gj : X → RL, Gj = Π ◦Mj ◦ F , via

yj = Gj(u) + ηj , ηj ∼ N(0,Γ0) iid.

We concatenate these observations to get data y ∈ RJL given by

y = G(u) + η, η ∼ Q0 := N(0,Γ)

where Γ = diag(Γ0, . . . ,Γ0) and G : X → RJL. This coincides with the setup at the

start of the section, with σ = F (u).

Assume that u ∼ µ0, where µ0 is independent of Q0. From the above, we see that

y|u ∼ Qu := N(G(u),Γ). We use this to find the distribution of u|y. First note

that

dQu

dQ0
(y) = exp

(
−Φ(u; y) +

1

2
|y|2Γ

)
where the potential (or negative log-likelihood) Φ : X × Y → R is given by

Φ(u; y) =
1

2
|G(u)− y|2Γ. (3.3.2)

Then under suitable regularity conditions, Bayes’ theorem tells us that the distri-

bution µy of u|y is as given below:

Theorem 3.3.7 (Existence and Well-Posedness). Let (X,F , µ0) denote any of the

probability spaces associated with any of the three priors introduced in the previous

subsection, and let Φ : X × Y → R be the potential (4.2.9) associated with the

corresponding forward map. Then the posterior distribution µy of the state u given
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data y is well-defined. Furthermore, µy � µ0 with Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Zµ
exp(−Φ(u; y)) (3.3.3)

where for y Q0-a.s.,

Zµ :=

∫
X

exp(−Φ(u; y))µ0(du) > 0.

Additionally, the posterior measure µy is locally Lipschitz with respect to y, in the

Hellinger distance: for all y, y′ ∈ Y with max{|y|Γ, |y′|Γ} < ρ, there exists C =

C(ρ) > 0 such that

dHell(µ
y, µy

′
) ≤ C|y − y′|Γ.

In the proof of the above theorem we will make use of the following version of Bayes’

theorem from [39].

Proposition 3.3.8 (Bayes’ theorem). Define the measure ν0(du,dy) = µ0(du)Q0(dy)

on X × Y . Assume that Φ : X × Y → R is ν0-measurable and that, for y Q-a.s.

Zµ =

∫
X

exp(−Φ(u; y))µ0(du) > 0.

Then the conditional distribution of u|y exists and is denoted by µy. Furthermore

µy � µ0 and, for y Q0-a.s.,

dµy

dµ0
=

1

Zµ
exp (−Φ(u; y)) .

We need to verify that the assumptions of this theorem are satisfied. To proceed we

first give some regularity properties of the potential Φ:

Proposition 3.3.9. Let (X,F , µ0) denote any of the probability spaces associated

with the priors introduced in the previous subsection. Then the potential Φ : X ×
Y → R associated with the corresponding forward map, given by (4.2.9), admits the

following properties.

(i) There is a continuous K : R+ × R+ → R+ such that for every ρ > 0, u ∈ X
and y ∈ Y with |y|Γ < ρ,

0 ≤ Φ(u; y) ≤ K(ρ, ‖u‖X).
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In the cases F = F2 and F = F3, K has no dependence on ‖u‖X .

(ii) For any fixed y ∈ Y , Φ(·; y) : X → R is continuous µ0-almost surely on the

probability space (X,F , µ0).

(iii) There exists C : R+ × R+ → R+ such that for every y1, y2 ∈ Y with

max{|y1|Γ, |y2|Γ} < ρ, and every u ∈ X,

|Φ(u; y1)− Φ(u; y2)| ≤ C(ρ, ‖u‖X)|y1 − y2|Γ.

Moreover, C(ρ, ‖ · ‖X) ∈ L2
µ0(X) for all ρ > 0.

Proof. (i) From equation (3.2.5) in the proof of Proposition 3.2.7, we see that

there exists C > 0 such that each Mj : A(D)→ H satisfies

‖Mj(σ1)−Mj(σ2)‖∗ ≤ C‖Mj(σ2)‖∗‖σ1 − σ2‖∞

for all σ1, σ2 ∈ A(D). Taking σ2 ≡ 1, say, we deduce that

‖Mj(σ1)‖∗ ≤ C‖Mj(1)‖∗‖σ1 − 1‖∞ + ‖Mj(1)‖∗ ≤ C(1 + ‖σ1‖∞).

Hence ‖σ‖∞ < ρ implies that ‖Mj(σ)‖∗ < C(1 + ρ). By Corollary 3.2.8, it

follows that Π ◦Mj : A(D)→ RL is bounded on bounded sets with respect to

‖ · ‖∞ for all j.

In the case F = F1, if u ∈ X then ‖F (u)‖∞ ≤ e‖u‖X . It follows that |G(u)|Γ ≤
maxj |Gj(u)|Γ ≤ C(1 + e‖u‖X ).

Now note that

Φ(u; y) ≤ |G(u)|2Γ + |y|2Γ.

Then for any y ∈ Y with |y| < ρ, we may bound

Φ(u; y) ≤ C(1 + e2‖u‖X + ρ2) =: K(ρ, ‖u‖X).

In the cases F = F2 and F = F3, we have that ‖F (u)‖∞ is bounded uniformly

over u ∈ X and so |G(u)|Γ ≤ maxj |Gj(u)|Γ ≤ C. Hence we obtain the bound

Φ(u; y) ≤ C(1 + ρ2) =: K(ρ).

(ii) Let u ∼ µ0 and suppose F : X → A(D) is such that ‖uε − u‖X → 0 implies

that F (uε) → F (u) either uniformly or in measure. Then Proposition 3.2.7
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tells us that Mj ◦ F : X → H is continuous at u for each j. The projection

Π : H→ RL is continuous, and so Gj = Π ◦Mj ◦F is continuous at u for each

j. In §3.3.1 it is shown that this is true for F = F1 and F = F2 for any u. For

F = F3 it is only true at points u whose level sets have zero measure, however

since we are assuming u ∼ µ0, a Gaussian measure, it follows from Proposition

7.2 in [72] that u µ0-almost surely has this property.

(iii) Let u ∈ X and y1, y2 ∈ Y with max{|y1|Γ, |y2|Γ} < ρ. Then we have

|Φ(u; y1)− Φ(u; y2)| = 1

2
|〈y1 + y2 − 2G(u), y1 − y2〉Γ|

≤ 1

2
(|y1|Γ + |y2|Γ + 2|G(u)|Γ)|y1 − y2|Γ

≤ (ρ+ |G(u)|)|y1 − y2|Γ
=: C(ρ, ‖u‖X)|y1 − y2|Γ

For the square-integrability we consider cases separately based on the prior.

In the log-Gaussian case, we may bound

C(ρ, ‖u‖X) ≤ C(1 + ρ2 + e‖u‖X )

using the bound from the proof of part (i), and so square-integrability follows

since Gaussians have exponential moments.

In the star-shaped and level set prior cases, we have that |G(u)| is bounded uni-

formly by a constant. We may hence bound C(ρ, ‖u‖X) above independently

of u, and so again the square-integrability follows.

Proof of Theorem 3.3.7. Define the product measure ν0(du,dy) = µ0(du)Q0(dy) on

X × Y . We showed in Proposition 3.3.9 that Φ(·; y) : X → R is almost-surely

continuous under the prior for all y ∈ Y , and Φ(u; ·) : Y → R is locally Lipschitz

for all u ∈ X. Together these imply that Φ : X × Y → R is almost-surely jointly

continuous under ν0. To see this, let (u, y) ∈ X × Y and let (un, yn)n≥1 ⊆ X × Y
be an approximating sequence so that ‖un − u‖X → 0 and |yn − y|Γ → 0. Then we

have

|Φ(un, yn)− Φ(u, y)| ≤ |Φ(un, yn)− Φ(un, y)|+ |Φ(un, y)− Φ(u, y)|.

The second term tends to zero µ0-almost surely by continuity. For the first term,
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note that the sequences (‖un‖X)n≥1 and (|yn|Γ)n≥1 are bounded, by K and R re-

spectively, say. Then we can use the local Lipschitz property to deduce that

|Φ(un, yn)− Φ(un, y)| ≤ C(R,K)|yn − y|Γ

since C(·, ·) : R×R→ R is monotonically increasing in both components. Therefore

this term tends to zero, and we obtain the desired continuity. It follows, see for

example Lemma 6.1 in [72], that Φ is ν0-measurable.

Now by Proposition 3.3.9(i), we may bound exp(−Φ(u; y)) by 1, and so Zµ ≤ 1. For

the lower bound, we consider cases separately based on the prior. First we consider

the log-Gaussian and level set prior cases so that µ0 is Gaussian. Let B ⊆ X be any

ball. Fix any ρ > |y|Γ and define

R = sup
u∈B

K(ρ, ‖u‖X)

where K is the upper bound from Proposition 3.3.9(i). This supremum is finite by

the continuity of K. Then we have∫
X

exp(−Φ(u; y))µ0(du) ≥
∫
B

exp(−Φ(u; y))µ0(du)

≥
∫
B

exp(−K(ρ, ‖u‖))µ0(du)

≥ exp(−R)µ0(B).

Since µ0 is Gaussian, µ0(B) > 0 and so Zµ > 0.

In the star-shaped prior case, proceed as above but take B = B1 ×D where B1 ⊆
C0
P (Rd−1) is any ball. Then we have

µ0(B) = (σ0 × τ0)(B1 ×D) = σ0(B1)τ0(D) > 0

by the assumption that σ0 assigns positive mass to balls, and so again Zµ > 0. The

above hold for all y ∈ Y , and so in particular for y Q0-almost-surely. We may now

apply Bayes’ Theorem 3.3.8 to obtain the existence of µy.

The proof of well-posedness is almost identical to that of the analogous result The-

orem 2.2 in [72] and is hence omitted.
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Figure 3.6: The two binary fields we attempt to recover. Conductivity A is drawn
from the star-shaped prior, with σ0 = h#

[
N(0.5, 109 · (302 − AD)−3)

]
, h(z) =

(1 + tanh z)/2, and τ0 = U([−0.5, 0.5]2). Conductivity B is constructed explicitly,
rather than being drawn from a prior.

3.4 Numerical Experiments

We investigate the effect of the choice of prior on the recovery of certain binary

conductivity fields. The specific fields we consider are shown in Figure 3.6, where

blue represents a conductivity of 1 and yellow a conductivity of 2. Simulations are

performed using the EIDORS software [2] to solve the forward model; a mesh of

43264 elements is used to create the data and a mesh of 10816 elements is used for

simulations in order to avoid an inverse crime [75].

In subsection 3.4.1 we describe the MCMC sampling algorithm that we will use. In

subsection 3.4.2 we define the parameters we will use for the forward model and

the MCMC simulations. We also describe how the data is created, and define our

choices of prior distributions. Finally in subsection 3.4.3 we present the results of

the simulation, looking at quality of reconstruction, convergence of the algorithm

and some properties of the posterior distribution.

3.4.1 Sampling Algorithm

We aim to produce a sequence of samples from µy on X, where µy is given by (3.3.3).

We make use of the preconditioned Crank-Nicolson Markov Chain Monte Carlo

(pCN-MCMC) method. The pCN-MCMC method is a modification of the standard

Random Walk Metropolis MCMC method which is well-adapted to Gaussian priors

in high dimensions. It was introduced in [13], and its dimension independent prop-
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erties are analysed and illustrated numerically in [62] and [34] respectively; the pCN

nomenclature was introduced in [34]. The algorithm is stated in the Appendix. In

the case of the star-shaped prior, we use a Metropolis-within-Gibbs algorithm [134],

alternately updating the field with the pCN method above and updating the centre

with the standard RWM method.

An advantage of these MCMC methods is that derivatives of the forward map are

not needed, only black-box solution of the forward model. However in order to

accurately compute some quantity of interest, such as the conditional mean, we

may need to produce a very large number of samples and tuning the algorithm to

minimize this effect is important. For this reason we compute the effective sample

size from the integrated autocorrelation (neglecting a burn-in period) of a quantity

of interest, as in [76].

3.4.2 Data and Parameters

We work on a circular domain of radius 1, with 16 equally spaced electrodes on its

boundary providing 50% coverage. We take all contact impedances zl = 0.01. We

stimulate adjacent electrodes with a current of 0.1, so that the matrix of stimulation

patterns I = (I(j))15
j=1 ∈ R16×15 is given by

I = 0.1×



+1 0 · · · 0

−1 +1 · · · 0

0 −1
. . . 0

...
...

. . . +1

0 0 0 −1


The conductivity is chosen such that it takes values 1 and 2. We perturb the

measurements with white noise η ∼ N(0, γ2I), γ = 0.0002, so that the mean relative

error on both sets of data is approximately 10%. The true conductivity fields used

to generate the data, henceforth referred to as Conductivity A and Conductivity B,

are shown in Figure 3.6. In all cases we generate N = 2.5 × 106 samples with a

burn-in of k0 = 5× 105 samples.

Our priors on fields will make use of Gaussians with covariances of the form

C = q(τ2 −∆)−α. (3.4.1)

These are essentially rescaled Whittle-Matern covariances [93], with τ representing
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the inverse length scale of the samples, α proportional to their regularity, and q

proportional to their amplitude. These distributions are discussed in detail in the

following chapter, section 4.2.1.

In what follows, denote by AN the Laplacian with Neumann boundary conditions

on [−1, 1]2, restricted to D, so that its domain is given by

D(AN ) =

{
u|D

∣∣∣∣ u ∈ H2([−1, 1]2),
∂u

∂n
= 0

}
.

Defining the Laplacian first on a square and then restricting to D will allow for

efficient generation of Gaussian samples via the fast Fourier transform. Note that if

we were to consider priors of the form (3.4.1) with τ = 0, we should restrict D(AN )

further to ensure the invertibility of AN .

Additionally, denote by AD the Laplacian with Dirichlet boundary conditions on

R1 = (−π, π], so that its domain is given by

D(AD) =
{
u ∈ H2

(
(−π, π]

) ∣∣ u(−π) = u(π) = 0
}
.

Gaussian prior

States are defined on a grid of 27 × 27 points. For both simulations the pCN jump

parameter β is taken to be 0.01, with choice of prior

µ0 = exp#
[
N(0.5 log 2, 1016 · (402 −AN )−6)

]
.

Star-shaped prior

Radial states are defined on a grid of 28 points. For Conductivity A, we choose

the pCN jump parameter β = 0.03 and the RWM jump parameter δ = 0.01. For

Conductivity B we choose β = 0.01 and δ = 0.005. For both simulations we use the

choice of prior µ0 = σ0 × τ0, with

σ0 = h#
[
N(0.5, 109 · (302 −AD)−3)

]
, τ0 = U([−0.5, 0.5]2),

where h(z) = (1 + tanh z)/2. Note that we choose Dirichlet boundary conditions

here to ensure that the boundaries of the star-shaped inclusions generated are closed

curves.
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Level set prior

States are defined on a grid of 27 × 27 points. For both simulations the pCN jump

parameter β is taken to be 0.005, with choice of prior

µ0 = N(0, (352 −AN )−5).

3.4.3 Results

Recovery

Figures 3.7 and 3.8 show conductivities arising from the MCMC chains, and Figure

3.9 shows the values of the misfit Φ at the different sample means. The sample means

are calculated in the sample spaces Xi and then pushed forward to the conductivity

space by the maps Fi, so that Figures 3.7-3.8 show estimates of Fi(E(u)). This

preserves the binary nature of the fields in the cases of the star-shaped and level set

priors, as distinct from estimates of E(Fi(u)).

For Conductivity A, the sample mean arising from the star-shaped prior provides

a better reconstruction than the other two prior choices. This is expected, since

the true conductivity was drawn from this prior. Whilst the sample mean arising

from the level set prior is fairly close to the true conductivity (both visually and in

terms of Φ), the boundary of the interface appears to have too large a length-scale.

Appropriate choice of prior length-scale is a key issue the with the level set method;

treating the length-scale hierarchically as another unknown in the problem may be

beneficial. The sample mean arising from the Gaussian prior fails to recover both

the sharp interface and the values of the conductivity, which is reflected in the value

Φ takes.

For Conductivity B, the level set prior is most effective in the reconstruction, since

a specific number of inclusions isn’t fixed a priori as it is for the star-shaped prior.

Again the Gaussian prior fails to recover both the sharp interface and the values of

the conductivity, however it appears to do a better job than the star-shaped prior

at identifying the location and shape of the two inclusions.

In both of the above cases, even though the individual samples coming from using

the level set prior contain many small inclusions, these do not show up in the sample

means.
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Convergence

In Figure 3.10, we show the approximate effective sample size (ESS) associated

with different quantities of interest. For all choices of prior, these are significantly

smaller than the total 2.5× 106 samples generated. Many more samples may hence

be required to produce accurate approximations of the posterior mean.

The chain associated with the star-shaped prior results in the largest ESS, likely

because we are only attempting to infer 28+2 parameters rather than 214 parameters

as in the log-Gaussian and level set cases.

In order to accelerate the convergence of the MCMC we can adjust the jump pa-

rameters β and δ. Larger choices of these parameters mean that accepted states

will be less correlated with the current state, however the proposed states are less

likely to be accepted. The choice β = 1 in pCN produces proposed states that are

independent of the current state, but dependent upon how far the prior is from the

posterior, very few or no states may be accepted so that the chain never moves.

Similarly, smaller choices of these jump parameters mean that more proposals will

be accepted, but the states will be more correlated. A balance hence must be

achieved – in our simulations we choose the parameters such that approximately

20-30% of proposals are accepted, though in general the optimal acceptance rate is

not known [11].

Alternatively, reconstruction may be accelerated by looking at an approximation of

the posterior instead of the exact posterior, for example using the ensemble Kalman

filter [69] or a sequential Monte Carlo method [12]. We could also initialize the

MCMC chains from EnKF estimates to significantly reduce the burn-in period and

hence computational cost. If the derivative of the forward map is available, Hybrid

Monte Carlo (HMC) methods could be used to accelerate the convergence [42].

Emulators could also be used to reduce the computational burden of derivative

calculation, allowing the use of geometric MCMC methods such as Riemannian

Manifold Hamiltonian Monte Carlo (RHMC) and Lagrangian Monte Carlo (LMC)

[89].

Posterior Behaviour

In Figures 3.11-3.13 we show kernel density estimates for a number of quantities

associated with each posterior distribution. The most regular densities arise in the

star-shaped case, with the distribution of all quantities appearing to be very close
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to uni-modal. More irregularity is seen for the log-Gaussian case, especially in the

joint distributions, but they are still relatively close to uni-modal.

The least regular, highly multi-modal densities come from the level set prior. One

reason for this is likely the lack of identifiability of the level set function: the forward

model only ‘sees’ the zero level set of the state, and hence cannot distinguish between

infinitely many different states. The prior can however distinguish between these

states, and will weight them appropriately, which can help explain the shape of

the posterior densities. Another reason for the lack of regularity could be that the

MCMC chain failed to converge within the burn-in period, and hence artefacts from

the transient period appear in the density estimates.

3.5 Conclusions

The primary contributions of this chapter are:

• We have formulated the EIT problem rigorously in the infinite dimensional

Bayesian framework.

• We have studied three different prior models, each with their own advantages

and disadvantages based on prior knowledge and the nature of the field we are

trying to recover.

• With each of these choices of prior we obtain well-posedness of the problem.

We can obtain well-posedness using additional prior models, as long as the

mapping from the state space to the conductivity space has appropriate reg-

ularity.

• The infinite dimensional formulation of the problem leads to the use of state of

the art function space MCMC methods for sampling the posterior distribution.

• Simulations performed using these methods illustrate that the conditional

mean provides a reasonable reconstruction of the conductivity, even with fairly

significant noise on the measurements. They also illustrate the fact that the

choice of prior has a significant impact on reconstruction and, in particular,

that the geometric priors (star-shaped and level set) can be particularly ef-

fective for the (approximately) piecewise constant fields that arise in many

applications.

Future research directions could include the following:
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• Sampling the exact posterior distribution using MCMC can be computation-

ally expensive. Methods that approximate the posterior may be as effective

for calculating quantities such as the conditional mean, with much lower com-

putational load. The relative effectiveness versus cost of different methods

could be studied. This could be especially important for simulations in three

dimensions, where forward model evaluations are even more expensive.

• When using the level set prior, the length scale of samples could be treated

hierarchically as an additional unknown in the problem. This is the topic of

the following chapter, for a more general class of forward models than just

EIT.

• The star-shaped prior could be extended to describe multiple inclusions, either

with the number of inclusions fixed or as an additional unknown.
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Figure 3.7: Recovery of Conductivity A. From left to right, the log-Gaussian, star-
shaped and level set priors are used. (Top) True conductivity (Line 2) Posterior
means (Lines 3-6) Posterior samples.
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Figure 3.8: Recovery of Conductivity B. From left to right, the log-Gaussian, star-
shaped and level set priors are used. (Top) True conductivity (Line 2) Posterior
means (Lines 3-6) Posterior samples.
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Conductivity A Conductivity B

Log-Gaussian prior 11596 12219

Star-shaped prior 228.84 266.22

Level set prior 284.28 193.03

Figure 3.9: The values of the misfit Φ at the sample mean, for the different conduc-
tivities and prior distributions.

Quantity Estimated ESS

û(0, 1) 40.0

û(0, 2) 90.7

û(1, 1) 35.4

û(1, 2) 44.5

û(1, 3) 36.0

û(2, 1) 101.9

û(2, 2) 37.9

û(2, 3) 89.7

Quantity Estimated ESS

x
(1)
0 241.7

x
(2)
0 89.6

r̂(1) 101.1

r̂(2) 179.4

r̂(3) 277.8

r̂(4) 214.8

r̂(5) 146.7

r̂(6) 146.7

Quantity Estimated ESS

û(0, 1) 26.4

û(0, 2) 28.9

û(1, 1) 27.2

û(1, 2) 23.5

û(1, 3) 23.5

û(2, 1) 26.0

û(2, 2) 26.6

û(2, 3) 24.1

Figure 3.10: (Conductivity B) The estimated effective sample size (ESS) for each
chain, approximated using a variety of quantities, for the different choices of prior.
In all cases 2.5 × 106 total MCMC samples are produced, with the initial 5 × 105

discarded as burn-in.
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Figure 3.11: (Conductivity B, log-Gaussian prior) Kernel density estimates associ-
ated with six Fourier coefficients of u. The diagonal displays the marginal densities
of each coefficient, and the off-diagonals the marginal densities of corresponding
pairs of coefficients.
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Figure 3.12: (Conductivity B, star-shaped prior) Kernel density estimates associated

with the centre (x
(1)
0 , x

(2)
0 ) and four Fourier coefficients of r. The diagonal displays

the marginal densities of each quantity, and the off-diagonals the marginal densities
of corresponding pairs of quantities.
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Figure 3.13: (Conductivity B, level set prior) Kernel density estimates associated
with six Fourier coefficients of u. The diagonal displays the marginal density of
each coefficient, and the off-diagonals the marginal densities of corresponding pairs
of coefficients. Axes are rescaled by 106 for clarity.
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Chapter 4

Hierarchical Bayesian Level Set

Inversion

4.1 Introduction

4.1.1 Background

The level set method has been pervasive as a tool for the study of interface problems

since its introduction in the 1980s [115]. In a seminal paper in the 1990s, Santosa

demonstrated the power of the approach for the study of inverse problems with un-

known interfaces [123]. The key benefit of adopting the level set parametrization of

interfaces is that topological changes are permitted. In particular for inverse prob-

lems the number of connected components of the field does not need to be known a

priori. The idea is illustrated in Figure 4.1. The type of unknown functions that we

might wish to reconstruct are piecewise continuous functions, illustrated in the bot-

tom row by piecewise constant ternary functions. However in the inversion we work

with a smooth function, shown in the top row and known as the level-set function,

which is thresholded to create the desired unknown function in the bottom row. This

allows the inversion to be performed on smooth functions, and allows for topological

changes to be detected during the course of algorithms. After Santosa’s paper there

were many subsequent papers employing the level set representation for classical

inversion, and examples include [23,31,41,133], and the references therein.

In many inverse problems arising in modern day science and engineering, the data

is noisy and prior regularizing information is naturally expressed probabilistically
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since it contains uncertainties. In this context, Bayesian inversion is a very at-

tractive conceptual approach [75]. Early adoption of the Bayesian approach within

level set inversion, especially in the context of history matching for reservoir simula-

tion, includes the papers [99,100,117,139]. In a recent paper [72] the mathematical

foundations of Bayesian level set inversion were developed, and a well-posedness

theorem established, using the infinite dimensional Bayesian framework developed

in [39, 91, 92, 131]. An ensemble Kalman filter method has also been applied in

the Bayesian level set setting [67] to produce estimates of piecewise constant perme-

abilities/conductivities in groundwater flow/electrical impedance tomography (EIT)

models.

For linear Bayesian inverse problems, the adoption of Gaussian priors leads to Gaus-

sian posteriors, formulae for which can be explicitly computed [50,96,101]. However

the level set map, which takes the smooth underlying level set function (top row,

Figure 4.1) into the physical unknown function (bottom row, Figure 4.1) is non-

linear; indeed it is discontinuous. As a consequence, Bayesian level set inversion,

even for inverse problems which are classically-speaking ‘linear’, does not typically

admit closed form solutions for the posterior distribution on the level set function.

Thus, in order to produce samples from the posterior arising in the Bayesian ap-

proach, MCMC methods are often used. Since the posterior is typically defined on

an infinite-dimensional space in the context of inverse problems, it is important that

the MCMC algorithms used are well-defined on such spaces. A formulation of the

Metropolis-Hastings algorithm on general state spaces is given in [135]. A particular

case of this algorithm, well-suited to posterior distributions on function spaces and

Gaussian priors, is the preconditioned Crank-Nicolson (pCN) method introduced

(although not named this way) in [13]. As the method is defined directly on a

function space, it has desirable properties related to discretization – in particular

the method is robust with respect to mesh refinement (discretization invariance) –

see [34] and the references therein. On the other hand, the need for hierarchical

models in Bayesian statistics, and in particular in the context of non-parametric

(i.e. function space) methods in machine learning, is well-established [15]. However,

care is needed when using hierarchical methods in order to ensure that discretization

invariance is not lost [3]. In this chapter we demonstrate how hierarchical meth-

ods can be employed in the context of discretization-invariant MCMC methods for

Bayesian level set inversion.
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Figure 4.1: Four continuous scalar fields (top) and the corresponding ternary fields
formed by thresholding these fields at two levels (bottom). The smooth function in
the top row is known as the level-set function and is used in the inversion procedure.
The discontinuous function in the bottom row is the physical unknown.

4.1.2 Key Contributions of the Chapter

Study of Figure 4.1 suggests that the ability of the level set representation to ac-

curately reconstruct piecewise continuous fields depends on two important scale

parameters:

• the length-scale of the level set function, and its relation to the typical sepa-

ration between discontinuities;

• the amplitude-scale of the level set function, and its relation to the levels used

for thresholding.

If these two scale parameters are not set correctly then MCMC methods to determine

the level set function from data can perform poorly; this was illustrated numerically

in the previous chapter in the context of EIT. This immediately suggests the idea of

using hierarchical Bayesian methods in which these parameters are learned from the

data. However there is a second consideration which interacts with this discussion.

From the work of Tierney [135] it is known that absolute continuity of certain

measures arising in the definition of Metropolis-Hastings methods is central for

their well-definedness, and hence to discretization invariant MCMC methods [34].

The key contribution of this chapter is to show how enforcing absolute continuity

links the two scale parameters, and hence leads to the construction of a hierarchical
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Bayesian level set method with a single scalar hierarchical parameter which deals

with the scale and absolute continuity issues simultaneously, resulting in effective

sampling algorithms.

The hierarchical parameter is an inverse length-scale within a Gaussian random field

prior for the level set function. In order to preserve absolute continuity of different

priors on the level set function as the length-scale parameter varies, and relatedly

to make well-defined MCMC methods, the mean square amplitude of this Gaussian

random field must decay proportionally to a power of the inverse length-scale. It

is thus natural that the level values used for thresholding should obey this power

law relationship with respect to the hierarchical parameter. As a consequence the

likelihood depends on the hierarchical parameter, leading to a novel form of posterior

distribution.

We construct this posterior distribution and demonstrate how to sample from it

using a Metropolis-within-Gibbs algorithm which alternates between updating the

level set function and the inverse length scale. As a second contribution of the chap-

ter, we demonstrate the applicability of the algorithm on three inverse problems, by

means of simulation studies. The first concerns reconstruction of a ternary piecewise

constant field from a finite noisy set of point measurements. The other two concern

reconstruction of the coefficient of a divergence form elliptic PDE from measure-

ments of its solution; in particular, groundwater flow (in which measurements are

made in the interior of the domain) and EIT (in which measurements are made on

the boundary).

4.1.3 Structure of the Chapter

In section 4.2 we describe a family of prior distributions on the level set function,

indexed by an inverse length scale parameter, which remain absolutely continuous

with respect to one another when we vary this parameter; we then place a hyper-

prior on this parameter. We describe an appropriate level set map, dependent on the

length-scale parameter because length and amplitude scales are intimately connected

through absolute continuity of measures, to transform these fields into piecewise

constant ones, and use this level set map in the construction of the likelihood.

We end by showing existence and well-posedness of the posterior distribution on

the level set function and the inverse length scale parameter. In section 4.3 we

describe a Metropolis-within-Gibbs MCMC algorithm for sampling the posterior

distribution, taking advantage of existing state-of-the-art function space MCMC,
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and the absolute continuity of our prior distributions with respect to changes in

the inverse length scale parameter, established in the previous section. Section 4.4

contains numerical experiments for three different forward models: a linear map

comprising pointwise observations, groundwater flow and EIT; these illustrate the

behavior of the algorithm and, in particular, demonstrate significant improvement

with respect to non-hierarchical Bayesian level set inversion.

4.2 Construction of the Posterior

In subsection 4.2.1 we recall the definition of the Whittle-Matérn covariance func-

tions, and define a related family of covariances parametrized by an inverse length

scale parameter τ . We use these covariances to define our prior on the level set

function u, and also place a hyperprior on the parameter τ , yielding a prior P(u, τ)

on a product space. In subsection 4.2.2 we construct the level set map, taking into

account the amplitude scaling of prior samples with τ , and incorporate this into

the forward map. The inverse problem is formulated, and the resulting likelihood

P(y|u, τ) is defined. Finally in subsection 4.2.3 we construct the posterior P(u, τ |y)

by combining the prior P(u, τ) and likelihood P(y|u, τ) using Bayes’ formula. Well-

posedness of this posterior is established.

4.2.1 Prior

As discussed in the introduction it can be important, within the context of Bayesian

level set inversion, to attempt to learn the length-scale of the level set function

whose level sets determine interfaces in piecewise continuous reconstructions. This

is because we typically do not know a-priori the typical separation of interfaces. It

is also computationally expedient to work with Gaussian random field priors for the

level set function, as demonstrated in [45,72]. A family of covariances parameterized

by length scale is hence required.

A widely used family of distributions, allowing for control over sample regularity,

amplitude and length scale, are Whittle-Matérn distributions. These are a family

of stationary Gaussian distributions with covariance function

cσ,ν,`(x, y) = σ2 21−ν

Γ(ν)

( |x− y|
`

)ν
Kν

( |x− y|
`

)
where Kν is the modified Bessel function of the second kind of order ν [102, 130].
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These covariances interpolate between exponential covariance, for ν = 1/2, and

Gaussian covariance, for ν → ∞. As a consequence, the regularity of samples

increases as the parameter ν increases. The parameter ` > 0 acts as a characteristic

length scale (sometimes referred to as the spatial range) and σ as an amplitude

scale (σ2 is sometimes referred to as the marginal variance). On Rd, samples from

a Gaussian distribution with covariance function cσ,ν,` correspond to the solution

of a particular stochastic partial differential equation (SPDE). This SPDE can be

derived using the Fourier transform and the spectral representation of covariance

functions – the paper [93] derives the appropriate SPDE for the covariance function

above:

1√
β`d

(I − `2∆)(ν+d/2)/2v = W (4.2.1)

where W is a white noise on Rd, and

β = σ2 2dπd/2Γ(ν + d/2)

Γ(ν)
.

Computationally, implementation of this SPDE approach requires restriction to a

bounded subset D ⊆ Rd, and hence the provision of boundary conditions for the

SPDE in order to obtain a unique solution. Choice of these boundary conditions may

significantly affect the autocorrelations near the boundary. The effects for different

boundary conditions are discussed in [93]. Nonetheless, the computational expedi-

ency of the SPDE formulation makes the approach very attractive for applications

and, if necessary, boundary effects can be ameliorated by generating the random

fields on larger domains which are a superset of the domain of interest.

From (4.2.1) it can be seen that the covariance operator corresponding to the co-

variance function cσ,ν,` is given by

Dσ,ν,` = β`d(I − `2∆)−ν−d/2. (4.2.2)

The fact that the scalar multiplier in front of the covariance operator Dσ,ν,` changes

with the length-scale means that the family of measures {N(0,Dσ,ν,`)}`, for fixed

σ and ν, are mutually singular. This leads to problems when trying to design

hierarchical methods based around these priors, even for latent Gaussian random

field models [141]. We hence work instead with the modified covariances

Cα,τ = (τ2I −∆)−α
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where τ = 1/` > 0 now represents an inverse length scale, and α = ν + d/2 still

controls the sample regularity. The inconsistency problems arising from varying σ

now disappear for latent Gaussian random field models [136]. To be concrete we will

always assume that the domain of the Laplacian is chosen so that Cα,τ is well-defined

for all τ ≥ 0; for example we may choose a periodic box, with domain restricted to

functions which integrate to zero over the box, Neumann boundary conditions on

a box, again with domain restricted to functions which integrate to zero over the

box, or Dirichlet boundary conditions. We have the following theorem concerning

the family of Gaussians {N(m, Cα,τ )}τ≥0, proved in Appendix.

Theorem 4.2.1. Let D = Td be the d-dimensional torus, and fix α > 0. Define the

family of Gaussian measures µτ0 = N(m, Cα,τ ), τ ≥ 0. Then

(i) for d ≤ 3, the (µτ0)τ≥0 are mutually equivalent;

(ii) if u ∼ µτ0, then µτ0-a.s. we have u ∈ Hs(D) and u ∈ Cbsc,s−bsc(D) for all

s < α− d/2. 1

(iii) E‖u−m‖2 ∝ τd−2α with constant of proportionality independent of τ.

Remark 4.2.2. Proof of this theorem is driven by the smoothness of the eigen-

functions of the Laplacian subject to periodic boundary conditions, together with the

growth of the eigenvalues, which is like like j2/d. These properties extend to Lapla-

cians on more general domains and with more general boundary conditions, and to

Laplacians with lower order perturbations, and so the above result still holds in these

cases. For discussion of this in relation to (ii) see [39]; for parts (i) and (iii) the

reader can readily extend the proof given in the Appendix.

Let X = C(D) denote the space of continuous real-valued functions on domain D.

In what follows we will always assume that α− d/2 > 0 in order that the measures

have samples in X almost-surely. Additionally we shall write Cτ in place of Cα,τ
when the parameter α is not of interest.

In subsection 4.2.2, we pass the inverse length scale parameter τ to the forward map

and treat it as an additional unknown in the inverse problem. We therefore require a

joint prior P(u, τ) on both the field and on τ . We will treat τ as a hyper-parameter,

so that P(u, τ) takes the form P(u, τ) = P(u|τ)P(τ). Specifically, we will take the

conditional distribution P(u|τ) to be given by µτ0 = N(m0, Cτ ), where m0 ∈ X is

constant, and the hyper-prior P(τ) to be any probability measure π0 on R+, the set

1i.e. the functions has s weak (possibly fractional) derivatives in the Sobolev sense, and the
bscth classical derivative is Hölder with exponent s− bsc;
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of positive reals; in practice it will always have a Lebesgue density on R+. The joint

prior µ0 on X × R+ is therefore assumed to be given by

µ0(du,dτ) = µτ0(du)π0(dτ). (4.2.3)

Discussion of prior choice for the hierarchical parameters in latent Gaussian models

may be found in [51].

4.2.2 Likelihood

In the previous subsection we defined a prior distribution µ0 on X × R+. We now

define a way of constructing a piecewise constant field from a sample (u, τ). In [72],

where the Bayesian level set method was introduced, the piecewise constant field

was constructed purely as a function of u as follows. Let n ∈ N and fix constants

−∞ = c0 < c1 < . . . < cn =∞. Given u ∈ X, define Di(u) ⊆ D by

Di(u) = {x ∈ D | ci−1 ≤ u(x) < ci}, i = 1, . . . , n

so that D =
⋃n
i=1Di(u) and Di(u) ∩ Dj(u) = ∅ for i 6= j, i, j ≥ 1. Then given

κ1, . . . , κn ∈ R, define the map F : X → Z by

F (u) =
n∑
i=1

κi1Di(u).

We may take Z = Lp(D), the space of p-integrable functions on D, for any 1 ≤
p ≤ ∞. This construction is effective for a fixed value of τ , but in light of The-

orem 4.2.1(iii), the amplitude of samples from N(m0, Cα,τ ), varies with τ . More

specifically, since d − 2α < 0 by assumption, samples will decay toward the mean

as τ increases. For this reason, employing fixed levels (ci)
n
i=0 and then changing

the value of τ during a sampling method may render the levels out of reach. We

can compensate for this by allowing the levels to change with τ , so that they decay

towards the mean at the same rate as the samples.

From Theorem 4.2.1(iii) we deduce that samples u from N(m0, Cα,τ ) decay towards

m0 at a rate τd/2−α with respect to τ . This suggests allowing for the following de-

pendence of the levels on the constant mean m0 and length scale parameter τ :

ci(τ) = m0 + τd/2−α(ci −m0), i = 1, . . . , n. (4.2.4)
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In order to update these levels, we must pass the parameter τ to the level set map

F . We therefore define a new level set map F : X ×R+ → Z as follows. Let n ∈ N,

fix initial levels −∞ = c0 < c1 < . . . < cn =∞ and define ci(τ) by (4.2.4) for τ > 0.

Given u ∈ X and τ > 0, define Di(u, τ) ⊆ D by

Di(u, τ) = {x ∈ D | ci−1(τ) ≤ u(x) < ci(τ)}, i = 1, . . . , n, (4.2.5)

so that D =
⋃n
i=1Di(u, τ) and Di(u, τ) ∩ Dj(u, τ) = ∅ for i 6= j, i, j ≥ 1. Now

given κ1, . . . , κn ∈ R, we define the map F : X × R+ → Z by

F (u, τ) =

n∑
i=1

κi1Di(u,τ). (4.2.6)

We can now formulate the inverse problem. Let Y = RJ be the data space, and let

S : Z → Y be a forward operator. Define G : X × R+ → Y by G = S ◦ F . Assume

we have data y ∈ Y arising from observations of some (u, τ) ∈ X × R+ under G,

corrupted by Gaussian noise η ∼ Q0 := N(0,Γ) on Y :

y = G(u, τ) + η. (4.2.7)

We now construct the likelihood P(y|u, τ). In the Bayesian formulation, we place a

prior µ0 of the form (4.2.3) on the pair (u, τ). Assuming Q0 is independent of µ0,

the conditional distribution Qu,τ of y given (u, τ) is given by

dQu,τ

dQ0
(y) = exp

(
− Φ(u, τ ; y) +

1

2
|y|2Γ

)
(4.2.8)

where the potential (or negative log-likelihood) Φ : X×R+ → R is defined by

Φ(u, τ ; y) =
1

2
|y − G(u, τ)|2Γ. (4.2.9)

and | · |Γ := |Γ−1/2 · |.

Denote Im(F ) ⊆ Z the image of F : X × R+ → Z. In what follows we make the

following assumptions on S : Z → Y .

Assumptions 4.2.3. (i) S is continuous on Im(F ).

(ii) For any r > 0 there exists C(r) > 0 such that for any z ∈ Im(F ) with ‖z‖L∞ ≤
r, |S(z)| ≤ C(r).
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In the next subsection we show that, under the above assumptions, the posterior

distribution µy of (u, τ) given y exists, and study its properties.

4.2.3 Posterior

Bayes’ theorem provides a way to construct the posterior distribution P(u, τ |y) using

the ingredients of the prior P(u, τ) and the likelihood P(y|u, τ) from the previous

two subsections. Informally we have

P(u, τ |y) ∝ P(y|u, τ)P(u, τ)

∝ exp (−Φ(u, τ ; y))µτ0(u)π0(τ)

after absorbing y−dependent constants from the likelihood into the normalization

constant. In order to make this formula rigorous some care must be taken, since µτ0
does not admit a Lebesgue density. The following is proved in the Appendix.

Theorem 4.2.4. Let µ0 be given by (4.2.3), y by (4.2.7) and Φ be given by (4.2.9).

Let Assumptions 4.2.3 hold. If µy(du, dτ) is the regular conditional probability mea-

sure on (u, τ)|y, then µy � µ0 with Radon-Nikodym derivative

dµy

dµ0
(u, τ) =

1

Z
exp

(
− Φ(u, τ ; y)

)
where, for y almost surely,

Z :=

∫
X×R+

exp
(
− Φ(u, τ ; y)

)
µ0(du,dτ) > 0.

Furthermore µy is locally Lipschitz with respect to y, in the Hellinger distance: for

all y, y′ with max{|y|Γ, |y′|Γ} < r, there exists a C = C(r) > 0 such that

dHell(µ
y, µy

′
) ≤ C|y − y′|Γ.

This implies that, for all f ∈ L2
µ0(X × R+;E) for separable Banach space E,

‖Eµyf(u, τ)− Eµ
y′
f(u, τ)‖E ≤ C|y − y′|.

To the best of our knowledge this form of Bayesian inverse problem, in which the

prior hyper-parameter appears in the likelihood because it is natural to scale a

thresholding function with that parameter, is novel. A different form of thresholding
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is studied in the paper [19] where boundaries defining regions in which certain events

occur with a specified (typically close to 1) probability is studied.

4.3 MCMC Algorithm for Posterior Sampling

Having constructed the posterior distribution on (u, τ)|y we are now faced with the

task of sampling this probability distribution. We will use the Metropolis-within-

Gibbs formalism, as described in for example [119], section 10.3. This algorithm

constructs the Markov chain (u(k), τ (k)) with the structure

• u(k+1) ∼ Kτ (k),y(u(k), ·),

• τ (k+1) ∼ Lu(k+1),y(τ (k), ·),

where Kτ,y is a Metropolis-Hastings Markov kernel reversible with respect to u|(τ, y)

and Lu,y is a Metropolis-Hastings Markov kernel reversible with respect to τ |(u, y).

The Metropolis-Hastings method is outlined in chapter 7 of [119]. See [53] for

related blocking methodologies for Gibbs samplers in the context of latent Gaussian

models.

In defining the conditional distributions, and the Metropolis methods to sample

from them, a key design principle is to ensure that all measures and algorithms

are well-defined in the infinite-dimensional setting, so that the resulting algorithms

are robust to mesh-refinement [34]. This thinking has been behind the form of

the prior and posterior distributions developed in the previous section, as we now

demonstrate.

In subsection 4.3.1 we define the kernel Kτ,y and in subsection 4.3.2 we define the

kernel Lu,y. Then in the final subsection 4.3.3 we put all these building blocks

together to specify the complete algorithm used.

4.3.1 Proposal and Acceptance Probability for u|(τ, y)

Samples from the distribution of u|(τ, y) can be produced using a pCN Metropolis

Hastings method [34], with proposal and acceptance probability as follows:

1. Given u, propose

v = m0 + (1− β2)1/2(u−m0) + βξ, ξ ∼ N(0, Cτ ).
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2. Accept with probability

α(u, v) = min
{

1, exp
(
Φ(u, τ ; y)− Φ(v, τ ; y)

)}
or else stay at u.

4.3.2 Proposal and Acceptance Probability for τ |(u, y)

Producing samples of τ |(u, y) is more involved, since we must first make sense of

this conditional distribution. To do this, define the three measures η0, ν0, and ν on

X × R+ × Y by

η0(du,dτ,dy) = µ0
0(du)π0(dτ)Q0(dy),

ν0(du,dτ,dy) = µτ0(du)π0(dτ)Q0(dy),

ν(du,dτ,dy) = µτ0(du)π0(dτ)Qu,τ (dy).

Here Q0 = N(0,Γ) is the distribution of the noise, and Qu,τ is as defined in (4.2.8).

Then we have the chain of absolute continuities ν � ν0 � η0, with

dν0

dη0
(u, τ, y) =

dµτ0
dµ0

0

(u) =: L(u, τ),

dν

dν0
(u, τ, y) =

dQu,τ

dQ0
(y) = exp

(
−Φ(u, τ ; y) +

1

2
|y|2Γ

)
,

and so by the chain rule we have ν � η0 and

dν

dη0
(u, τ, y) =

dQu,τ

dQ0
(y) · dµτ0

dµ0
0

(u) =: ϕ(u, τ, y).

We use the conditioning lemma, Theorem 3.1 in [39], to prove the existence of the

desired conditional distribution.

Theorem 4.3.1. Assume that Φ : X×Y → R is µ0
0×Q0 measurable and µ0

0×Q0-a.s.

finite. Assume also that, for (u, y) µ0
0 ×Q0-a.s.,

Zπ :=

∫
R+

exp
(
− Φ(u, τ ; y)

)
L(u, τ)π0(dτ) > 0.

Then the regular conditional distribution of τ |(u, y) exists under ν, and is denoted
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by πu,y. Furthermore, πu,y � π0 and, for (u, y) ν-a.s,

dπu,y

dπ0
(τ) =

1

Zπ
exp

(
− Φ(u, τ ; y)

)
L(u, τ).

Proof. The conditional random variable τ |(u, y) exists under η0, and its distribution

is just π0 since η0 is a product measure. Theorem 3.1 in [39] then tells us that the

the conditional random variable τ |(u, y) exists under ν. We denote its distribution

πu,y. Define

c(u, y) =

∫
R+

ϕ(u, τ, y)π0(dτ)

= exp

(
1

2
|y|2Γ

)∫
R+

exp
(
− Φ(u, τ ; y)

)
L(u, τ)π0(dτ).

Now since exp
(

1
2 |y|2Γ

)
∈ (0,∞) µ0

0×Q0-a.s., we deduce that c(u, y) > 0 µ0
0×Q0-a.s.

by the µ0
0-a.s. positivity of Zπ. By the absolute continuity ν � η0, we deduce that

c(u, y) > 0 ν-a.s. Therefore, again by Theorem 3.1 in [39], we have πu,y � π0 and,

for (u, y) ν-a.s.,

dπu,y

dπ0
(τ) =

1

c(u, y)
ϕ(u, τ, y)

=
1

Zπ
exp

(
− Φ(u, τ ; y)

)
L(u, τ).

Remark 4.3.2. Above we have used µ0
0 as a reference measure, and the function

L(u, τ) enters our expression for the posterior. But any µλ0 will suffice since the

entire family of measures {µτ0}τ≥0 are equivalent to one another. A straightforward

calculation with the chain rule gives

dπu,y

dπ0
(τ) =

1

Zπ,λ

dµτ0
dµλ0

(u) exp
(
− Φ(u, τ ; y)

)
:=

1

Zπ,λ
Lλ(u, τ) exp

(
− Φ(u, τ ; y)

)
.

We now wish to sample from πu,y using a Metropolis-Hastings algorithm. We assume

from now on that π0 admits a Lebesgue density, so that πu,y also admits a Lebesgue

density. Abusing notation and using πu,y, π0 to denote Lebesgue densities as well as

the corresponding measures we have

πu,y(τ) ∝ exp
(
− Φ(u, τ ; y)

)
L(u, τ)π0(τ).
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Take a proposal kernel Q(τ,dγ) = q(τ, γ) dγ. Define the two measures ρ, ρT on

(R× R,B(R)⊗ B(R)) by

ρ(dτ,dγ) = πu,y(dτ)Q(τ,dγ)

∝ exp
(
− Φ(u, τ ; y)

)
L(u, τ)π0(τ)q(τ, γ) dτdγ,

ρT (dτ,dγ) = µ(dγ,dτ).

Then under appropriate conditions on π0 and q, these two measures are equivalent.

Define r(τ, γ) to be the Radon-Nikodym derivative

r(τ, γ) :=
dρT

dρ
(τ, γ)

= exp
(
Φ(u, τ ; y)− Φ(u, γ; y)

)
· dµγ0

dµτ0
(u) · π0(γ)q(γ, τ)

π0(τ)q(τ, γ)
.

The general form of the Metropolis-Hastings algorithm, as for example given in [135],

says that we produce samples from πu,y by iterating the follow two steps:

1. Given τ , propose γ ∼ Q(τ,dγ).

2. Accept with probability α(τ, γ) = min
{

1, r(τ, γ)
}

, or else stay at τ .

In order to implement this algorithm, we need an expression for the Radon-Nikodym

derivative
dµγ0
dµτ0

(u). Using Proposition 4.6.3, we see that

dµγ0
dµτ0

(u) =

∞∏
j=1

λj(τ)1/2

λj(γ)1/2
exp

(
1

2

∞∑
j=1

(
1

λj(τ)
− 1

λj(γ)

)
〈u−m0, ϕj〉2

)
(4.3.1)

= exp

(
1

2

∞∑
j=1

(
1

λj(τ)
− 1

λj(γ)

)
〈u−m0, ϕj〉2 + log

(
λj(τ)

λj(γ)

))

where the λj(·) are the eigenvalues of C· as defined earlier, and ϕj are the corre-

sponding eigenvectors.

From Theorem 4.2.1 we know that µτ0 and µγ0 are equivalent, and so it must be the

case that the expressions for the derivative above are almost-surely finite. However

this is not immediately clear from inspection of the expression; thus we provide

some intuition about why it is so in the following theorem. The proof is given in

the Appendix.

Theorem 4.3.3. Assume that u ∼ N(m0, C0). Then for each τ > 0,
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(i)
∞∑
j=1

(
1

λj(τ)
− 1

λj(0)

)
〈u − m0, ϕj〉2 is almost-surely finite if and only if d = 1;

and

(ii)
∞∑
j=1

[(
1

λj(τ)
− 1

λj(0)

)
〈u−m0, ϕj〉2 + log

(
λj(τ)

λj(0)

)]
is almost-surely finite if d ≤

3.

A consequence of part (i) of this result is that in dimensions 2 and 3, both the

product and the sum in (4.3.1) diverge, despite the whole expression being finite.

This means that care is required when numerically implementing the Gibbs update

of τ.

4.3.3 The Algorithm

Putting the theory above together, we can write down a Metropolis-within-Gibbs

algorithm for sampling the posterior distribution. Recall that we assumed the pro-

posal kernel Q admitted a Lebesgue density q: Q(τ,dγ) = q(τ, γ)dγ.

Let (λj(τ), ϕj)j≥1 denote the eigenbasis associated with Cτ . Define

w(τ, γ) = exp

(
1

2

∞∑
j=1

(
1

λj(τ)
− 1

λj(γ)

)
〈u−m0, ϕj〉2 + log

(
λj(τ)

λj(γ)

))

and set

ατ (u, v) = min
{

1, exp
(
Φ(u, τ ; y)− Φ(v, τ ; y)

)}
,

αu(τ, γ) = min

{
1, exp

(
Φ(u, τ ; y)− Φ(u, γ; y)

)
· w(τ, γ) · π0(τ)q(τ, γ)

π0(γ)q(γ, τ)

}
.

Fix jump parameter β ∈ (0, 1], and generate (u(k), τ (k))k≥0 as follows:

Then (u(k), τ (k))k≥0 is a Markov chain which is invariant with respect to µy(du, dτ).

4.4 Numerical Results

We perform a variety of numerical experiments to illustrate the performance of

the hierarchical algorithm described in section 4.3. We focus on three different

forward models. The first is pointwise observations composed with the identity –

the simplicity of this model allows us to probe the behavior of the algorithm at low
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Algorithm 2 Metropolis-within-Gibbs

1. Set k = 0 and pick initial state (u(0), τ (0)) ∈ X × R+.
2. Propose v(k) = m0 + (1− β2)1/2(u(k) −m0) + βξ(k), where ξ(k) ∼ N(0, Cτ ).

3. Set u(k+1) = v(k) with probability ατ
(k)

(u(k), v(k)), independently of (u(k), v(k)).
4. Set u(k+1) = u(k) otherwise.
5. Propose γ(k) ∼ Q(τ (k), ·).
6. Set τ (k+1) = γ(k) with probability αu

(k+1)
(τ (k), γ(k)), independently of

(τ (k), γ(k)).
7. Set τ (k+1) = τ (k) otherwise.
8. k → k + 1 and return to 2.

computational cost, and such models are also of interest in applications such as image

reconstruction – see for example [8, 124] and the references therein. The other two,

groundwater flow and EIT, are physical models which have previously been studied

extensively, including study of non-hierarchical Bayesian level set methods [45, 72].

A review of studies on inverse problems associated with EIT is given in [20].

4.4.1 Identity Map

The first inverse problem is based on reconstruction of a piecewise constant field

from noisy pointwise observations.

The forward model

Let D = [0, 1]2 and define a grid of observation points {xj}Jj=1 ⊆ D. Let Z = Lp(D)

for some 1 ≤ p < ∞ and let Y = RJ . The forward operator S : Z → Y is defined

by

S(z) = (z(x1), . . . , z(xJ)).

We are then interested in finding z, given the prior information that it is piecewise

constant, and taking a number of known prescribed values. Let G = S◦F : X×R+ →
Y . We reconstruct (u, τ) and hence z = F (u, τ). The map S is not continuous, and

so Assumptions 4.2.3 do not hold. However Proposition 4.6.2 shows that the map

G is uniformly bounded, and almost-surely continuous under the priors considered.

From this the conclusions of Proposition 4.6.1 follow, and it is possible to deduce

the conclusions of Theorem 4.2.4.
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Simulations and results

We study the effect of different length scales, for both hierarchical and non-hierarchical

methods, demonstrating the advantages of the former over the latter. To this end we

define τ †i = 5i, i = 1, . . . , 10, and generate 10 different true level set fields u†i ∼ µ
τ†i
0

on a mesh of 210 × 210 points. This leads to 10 sets of data yi, given by

yi = G(u†i , τ
†
i ) + ηi, ηi ∼ N(0,Γ) i.i.d.

where we take the noise covariance Γ = diag(0.22). The level set map F is defined

such that there are 3 phases, taking the constant values 1, 3 and 5. The mean relative

error on the generated data sets ranges from 6% to 9%.

One of the motivations for developing a hierarchical method is that little knowledge

may be known a priori about the length scale associated with the unknown field.

We therefore sample from each hierarchical posterior distribution associated with

each yi using a variety of initial values for the length scale parameter. This allows

us to check that, computationally, we can recover a good approximation to the true

length scale even if our initial guess is poor. Specifically, for each set of data we run

10 hierarchical MCMC simulations started at the different values of τ = τ †k , giving

a total of 100 hierarchical MCMC chains. For all chains we place a relatively flat

prior of N(20, 102) on τ , and fix the smoothness parameter α = 5 on the prior for

u.

We also wish to compare how the hierarchical method compares with the non-

hierarchical method. We therefore look at the 10 different posterior distributions

that arise from each set of data yi when using each of 10 fixed prior inverse length

scale τ †k , which gives another 100 MCMC chains.

We perform all sampling on a mesh of 27× 27 points to avoid an inverse crime, and

the observation grid {xi}100
i=1 is taken to be a uniformly spaced grid of 100 points.

We produce 5 × 106 samples for each chain, and discard the first 106 samples as

burn-in when calculating quantities of interest.

In Figure 4.2 we look at the recovery of the true value of τ with the hierarchical

method. For large enough τ0, the mean of τ after the burn-in period is roughly

constant with respect to varying the initialization point, for each posterior. This

makes sense from a theoretical point of view since these means arise from the same

posterior distribution, for a fixed truth, but it is also reassuring from a computational

point of view since the output is close to independent of the initial guess for the
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length scale. There does however appear to be an issue with initializing the value

of τ at too low a value, with the value τ tending to get stuck far from the truth

when initialized at = 5. This effect has been detected in several other experiments

and models – initializing the value of τ much lower than the true inverse length can

cause the parameter to become stuck in a local minimum. Such an effect has not

been observed however when the parameter is initialized significantly larger than

the true value. Table 4.1 shows that recovery of the true value of τ is very good

for τ † ≤ 35, though becomes slightly worse for larger values of τ †. The means here

are calculated without the τ0 = 5 sample means since they are clearly outliers for

most of the posteriors. One possible explanation for the lack of recovery in the

cases τ † = 40, 45 and 50 is to do with the structure of the observation map S. The

observation grid has a length scale associated with it, related to distances between

observation points, and so issues could arise when trying to detect the length scale

of the field that is significantly shorter than this. Additionally, the length scales

1/τ are closer for larger τ and so it may be more difficult to distinguish between

particular values.

For brevity we now focus on the case where τ † = 15. The traces of the values of

τ along the hierarchical chains corresponding to this truth is shown in Figure 4.3.

After approximately 106 samples, all chains have become centred around the true

length scale. This convergence appears to be roughly linear for each chain.

Figure 4.4 shows the push forwards of the sample means from the different chains

under the level set map, that is, approximations of F (E(u),E(τ)). This figure also

shows approximations of E(F (u, τ)) and typical samples of F (u, τ) coming from the

different chains. We see that these conditional means for the hierarchical method

appear to agree with one other. This is reassuring for the reason mentioned above

– they are all estimates of the mean of the same distribution. The figures for the

non-hierarchical posteriors admit greater variation, especially near the boundary for

higher values of τ . Moreover, not all inclusions are detected when the length scale

parameter is taken to be τ = 5. Note that the mean from the hierarchical poste-

rior agrees closely with that from the non-hierarchical posterior using the fixed true

length-scale τ = 15. Additionally, even though the means are reasonable approxi-

mations to the truth in most cases, the typical samples are much worse when using

the non-hierarchical method with an incorrect length scale parameter.

We can also consider the sample variance of the pushforward of the samples by

the level set map, i.e. approximations of the quantity Var(F (u, τ)). In Figure 4.5

we show this quantity for both the hierarchical and non-hierarchical priors. Note
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Table 4.1: (Identity model) The value of τ used to create the data yi, and the mean
value of τ across the MCMC chains and the different initial values of τ .

τ † Mean sample mean of τ

5 6.10
10 10.0
15 15.5
20 21.8
25 24.8
30 30.0
35 35.4
40 44.6
45 50.8
50 40.6

that for the non-hierarchical priors, the variance increases both at the boundary

and away from the observation points for larger values of τ . Variance is also higher

along the interfaces and within the central phase, since points in these locations

are more likely to switch between all three phases. The hierarchical approximations

all appear to agree. Whilst the hierarchical means are very similar to the non-

hierarchical means using the true length scale, as seen in Figure 4.4, the hierarchical

variances are smaller away from the observation points.

Additionally, we look at the level set function u itself in Figure 4.6. In these plots we

rescale the level set function by τα−d/2 = τ4 so that they are all of approximately the

same amplitude. The means for both the hierarchical and non-hierarchical methods

are again quite similar to one another, though the difference between the typical

samples is much more stark.

Finally, in Figure 4.7, we look at the joint densities of the inverse length scale

parameter τ and first five Karhunen-Loève (KL) modes of the level set function u.2

Non-trivial correlations are evident between τ and each of these modes, with the

support of the densities appearing non-convex. This is likely related to the non-

linear scaling between the length-scale and the amplitude of the level-set function

under the prior. Conversely the KL modes, whilst still correlated with one-another

other, have simpler joint densities. Note, also, that the posterior on the length scale

is centred close to the true value of the inverse length scale parameter τ.

2KL modes are the eigenfunctions of the covariance operator, here ordered by decreasing eigen-
value.
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Figure 4.2: (Identity model) The sample mean of τ along each hierarchical MCMC
chain, against the initial value of τ . The different curves arise from using different
data yi.
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Figure 4.3: (Identity model) The trace of τ along the MCMC chain, when initialized
at the 10 different initial values. True inverse length scale is τ = 15.
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(a) The true geometric field used to generate the data y, with true inverse length scale
τ = 15.

(b) (Top) Representative samples of F (u, τ) under the hierarchical posterior. (Middle)
Approximations of F (E(u),E(τ)). (Bottom) Approximations of E(F (u, τ)). From left-to-
right, τ is initialized at τ = 5, 15, 25, 35, 45.

(c) As in (b), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
5, 15, 25, 35, 45.

Figure 4.4: Simulations for the identity model.
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Figure 4.5: (Identity model) Approximations of Var(F (u, τ)) using the hierarchical
(top) and fixed (bottom) priors, initialized or fixed at τ = 5, 15, 25, 35, 45, from
left-to-right. True inverse length scale is τ = 15.

(a) (Top) Representative samples of the rescaled level-set function τ4 · u and (bottom)
approximations of E(τ4 ·u) using the hierarchical method. From left-to-right, τ is initialized
at τ = 5, 15, 25, 35, 45.

(b) As in (a), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
5, 15, 25, 35, 45.

Figure 4.6: (Identity model) Respresentative samples and sample means of the level
set function. The rescaling τ4 means that the above quantities have the same
approximate amplitude. True inverse length scale is τ = 15.
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Figure 4.7: (Identity model) (diagonal) Empirical densities of τ and the first five
KL modes of u. (off-diagonal) Empirical joint densities. True inverse length scale is
τ = 15.
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4.4.2 Identification of Geologic Facies in Groundwater Flow

The identification of geologic facies in subsurface flow applications is a common

example of a large scale inverse problem that involves the recovery of unknown in-

terfaces. In the case of groundwater flow, for example, the inverse problem concerns

the recovery of the interface between regions with different hydraulic conductivity

given measurements of hydraulic head. Geometric inverse problems of this type have

recently received a lot of attention by the research community [99,100,117,139]. In-

deed, it has been recognized that the geometry determined by the aforementioned

interfaces constitutes one of the main sources of uncertainty that must be quantified

and reduced by means of Bayesian inversion.

In the context of groundwater flow, the identification of interfaces between regions

associated with different types of geological properties can be posed as the recovery

of a piecewise constant conductivity field parameterized with a level set function.

A fully Bayesian level set framework for the solution of the aforementioned type of

inverse problems has been recently developed in [72]. The MCMC method applied

in [72] performs well when the prior of the level set function properly encodes the

intrinsic length-scales of the unknown interfaces. Clearly, in practical applications

such length-scales are most likely unknown and their incorrect specification may

result in inaccurate and uncertain estimates of the unknown interfaces. The pur-

pose of this section is to show that the proposed hierarchical Bayesian framework

enables us to determine an optimal length-scale in the prior of the level set function

which, in turn, captures more accurately the intrinsic length-scale of the unknown

interface.

The forward model

We are interested in the identification of a piecewise constant hydraulic conductivity,

denoted by κ, of a two-dimensional confined aquifer whose physical domain is D =

[0, 6] × [0, 6]. We assume single-phase steady-state Darcy flow. The piezometric

head, denoted by h(x) (x ∈ D), which describes the flow within the aquifer can be

modeled by the solution of [10]

−∇ · κ∇h = f in D (4.4.1)

where f represents sources/sinks and where boundary conditions need to be spec-

ified. For the present work we consider the setup from the Benchmark used in
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[26,63,67–69,72]. In concrete, we assume that f is a recharge term of the form

f(x1, x2) =


0 if 0 < x2 ≤ 4,

137 if 4 < x2 < 5,

274 if 5 ≤ x2 < 6.

(4.4.2)

and we consider the following boundary conditions

h(x1, 0) = 100,
∂h

∂x1
(6, x2) = 0,

−κ ∂h
∂x1

(0, x2) = 500,
∂h

∂x2
(x1, 6) = 0.

(4.4.3)

We consider the inverse problem of recovering κ from observations {`j(h)}64
j=1 of

h given by (4.4.1)-(4.4.3). We assume we have smoothed point observations given

by

`j(h) =

∫
D

1

2πε2
e−

1
2ε2

(x−qi)2h(x) dx

where ε > 0 and {qi}64
i=1 ⊆ D is a grid of 64 observation points equally distributed

on D. Let Z = Lp(D) for some 1 ≤ p < ∞ and Y = R64. Then the forward map

S : Z → Y is given by

h 7→ (`1(h), . . . , `64(h)).

We assume that each κi in the definition of the level set map F is strictly positive.

The image of F is contained in the set of bounded fields on D bounded below by

mini κi > 0. In [72] the map S is shown to be continuous and uniformly bounded

on such fields, with respect to ‖ · ‖Lp(D) for some p, and so Assumptions 4.2.3 hold.

As a consequence Theorem 4.2.4 applies directly.

Simulations and results

In the previous example we illustrate, with a simple model, the capabilities of the

proposed framework to recover a specified true length-scale and a true level set

function that defines a true discontinuous field from which synthetic data are gen-

erated. However, we must reiterate that, in practice, we wish to recover the true

discontinuous field; the level set function is merely an artifact that we use for the

parameterization of such a field. In practical applications the aim of the proposed

hierarchical Bayesian level set framework is to infer a length-scale alongside with a

level set function which, by means of expression (4.2.6), produces a discontinuous
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field that captures the desired piecewise constant field as accurately as possible and,

in particular, the intrinsic length-scale separation of the interfaces determined by

the discontinuities of the true field. Therefore, in order to test our methodology

in the applied setting of groundwater flow, rather than a true level set function,

in this subsection we consider the true hydraulic conductivity κ† whose logarithm

is displayed in Figure 4.9 (top). This κ† is defined such that it takes the constant

values e1.5, e4 and e6.5. This is channelized conductivity typical of fluvial environ-

ments and often used as Benchmarks for subsurface flow inversion [72,100,117,139].

Note that the values that the conductivity can take on the three different regions

differ by at least one of order of magnitude, due to the logarithmic transformation.

While there is indeed an intrinsic length-scale in the channelized structure, this true

conductivity field does not come from a specified level set prior.

Synthetic data are generated by means of

y = (`1(h†), . . . , `64(h†)) + η, η ∼ N(0,Γ) i.i.d.

where h† is the solution to (4.4.1)-(4.4.3) for κ = κ†. Equations (4.4.1)-(4.4.3)

have been solved with cell-centered finite differences [9]. In order to avoid inverse

crimes, synthetic data are generated on a grid finer (160x160 cells) than the one

used for the inversion (80x80 cells). In addition, Γ is a diagonal matrix given by

Γi,i = 0.0175`i(h
†). In other words, we add noise that corresponds to 1.75% of the

size of the noise-free observations.

We consider a Gaussian prior N(35, 102) for τ . We then apply the hierarchical

MCMC method from subsection 4.3.3 initialized with the following six different

choices of τ = 1, 10, 30, 50, 70, 90 and a sample of the prior (with that given τ) of

the level set function u. We thus produce six MCMC chains of length 4 × 106 and

discard the first 106 as burn-in for the computation of quantities of interest. The

trace plots of τ are displayed in Figure 4.8 from which we clearly observe that all

chains, regardless of their initial point, seem to stabilize and produce samples around

τ = 18. In the middle-top of Figure 4.9 we display the logarithm of some representa-

tives samples of F (u, τ) under the hierarchical posterior. The middle-middle panel

of Figure 4.9 shows the logarithm of F (E(u),E(τ)), i.e., the pushforward of the pos-

terior means obtained using the hierarchical method. The middle-bottom of Figure

4.9 displays the logarithm of the approximations of E(F (u, τ)). That is, the expected

value of the pushforward samples under the posterior. The aforementioned results

corresponds to five MCMC chains with τ initialized τ = 10, 30, 50, 70, 90 (the results

for τ = 1 have been omitted). Similarly, Figure 4.10 (top) shows the approxima-
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tions of the variance of the pushforward samples of the posterior, i.e. Var
(
F (u, τ)

)
.

Clearly, both E(F (u, τ)) and F (E(u),E(τ)) result in fields that provide a reasonable

approximation of the true field. Note that, as expected, the largest uncertainty in

the distribution of the pushforward samples is around the interface between the re-

gions with different conductivity. In Figure 4.11 we show representative samples of

u (top-top) and approximations to E(u) (top-bottom). In these plots, as before, we

rescale the level set function by τα−d/2 = τ4 so that they are all of approximately

the same amplitude. In Figure 4.12 we display the empirical densities of τ and the

first five KL modes of u. A key observation is that, although the true hydraulic

conductivity is not generated by thresholding a Gaussian random field, and hence

there is no “true” length scale, the posterior nonetheless settles on a narrow range

of values of τ which are consistent with the data.

From the aforementioned results we can also clearly see that the hierarchical MCMC

algorithm produces similar outcomes regardless of the initialization of the inverse

of the length-scale τ , reflecting ergodicity of the Markov chain. The results from

τ = 1 are not shown but they are very similar to the ones from other chains. As

with the results from the previous subsection, the similarity in outcomes between

all six chains is not surprising as these are aimed at sampling from the same pos-

terior distribution; but the fact that this posterior distribution on τ concentrate

near to a single value is of particular interest because it shows that the true un-

known field has an intrinsic length-scale, even though it was no constructed via the

map F (u, τ). Furthermore, this similarity of outcomes between chains showcases the

main advantage of the proposed framework with respect to the non-hierarchical one.

Indeed, as stated earlier, the proposed method has the ability to recover a distribu-

tion for the intrinsic length-scale which gives rise to reasonably accurate estimates

(i.e. F (E(u),E(τ)) and E(F (u, τ))) of the true unknown field. We now present the

numerical results from applying a non-hierarchical MCMC algorithm in which the

inverse of length-scale τ is fixed. We consider again six MCMC chains as before

with the (now fixed) values of τ = 1, 10, 30, 50, 70, 90 that we used to initialized

the hierarchical chains used before. Analogous results to the ones presented for

the hierarchical method can be found in the bottom panels of Figure 4.9 as well as

the bottom of Figures 4.10 and 4.11. Clearly, the lack of properly prescribing the

intrinsic length-scale in the non-hierarchical method results in inaccurate estimates

of the true field. We clearly observe that for τ ≥ 30 the estimates of the truth given

by F (E(u),E(τ)) and E(F (u, τ)) are substantially inaccurate and the uncertainty

measured by Var
(
F (u, τ)

)
is large. The non-hierarchical MCMC for τ = 1 did not

converge; the results are not shown. The non-hierarchical MCMC only provides rea-
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Figure 4.8: (Groundwater flow model) Trace plots of τ obtained from six hierarchical
MCMC chains.

sonable estimates for τ = 10 and τ = 30. However, we can visually appreciate that

these results are still suboptimal when compared to the results from the hierarchical

framework.

4.4.3 Electrical Impedance Tomography

Finally we consider the electrical impedance tomography (EIT) problem. This

problem has previously been approached with a non-hierarchical Bayesian level set

method [45]. In this subsection we show that the hierarchical approach outperforms

the non-hierarchical approach in the case where the true conductivity is a binary

field, given the same number of forward model evaluations.

The forward model

EIT is an imaging technique which attempts to infer the internal conductivity of a

body from boundary voltage measurements. Typical applications include medical

imaging, as well as subsurface imaging where it is known as electrical resistivity to-

mography (ERT). We utilize the complete electrode model (CEM), proposed in [128].
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(a) (Left) Logarithm of the true hydraulic conductivity field used to generate the data y.
(Right) True pressure field, and the grid of observation points.

(b) (Top) Logarithm of representative samples of F (u, τ) under the hierarchical posterior.
(Middle) Logarithm of the approximations of F (E(u),E(τ)). (Bottom) Logarithm of the
approximations of E(F (u, τ)). From left-to-right, τ is initialized at τ = 10, 30, 50, 70, 90.

(c) As in (b), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
10, 30, 50, 70, 90.

Figure 4.9: Simulations for the groundwater flow model.
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Figure 4.10: (Groundwater flow model) Approximations of Var
(
F (u, τ)

)
using the

hierarchical (top) and the non-hierarchical (bottom) MCMC.

(a) (Top) Representative samples of the rescaled level-set function τ4 · u and (bottom)
approximations of E(τ4 ·u) using the hierarchical method. From left-to-right, τ is initialized
at τ = 10, 30, 50, 70, 90.

(b) As in (a), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
10, 30, 50, 70, 90.

Figure 4.11: (Groundwater flow model) Respresentative samples and sample means
of the level set function. The rescaling τ4 means that the above quantities have the
same approximate amplitude. True inverse length scale is τ = 15.
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Figure 4.12: (Groundwater flow model) (diagonal) Empirical densities of τ and the
first five KL modes of u. (off-diagonal) Empirical joint densities.

145



This is a physically accurate model which has been shown to agree with experimen-

tal data up to measurement precision. The strong form of the PDE governing the

model is given by

−∇ · (σ(x)∇v(x)) = 0 x ∈ D∫
el

σ
∂v

∂n
dS = Il l = 1, . . . , L

σ(x)
∂v

∂n
(x) = 0 x ∈ ∂D \⋃L

l=1 el

v(x) + zlσ(x)
∂v

∂n
(x) = Vl x ∈ el, l = 1, . . . , L.

Here D ⊆ R2 is the domain and {el}Ll=1 ⊆ ∂D are electrodes on the boundary upon

which currents {Il}Ll=1 are injected and voltages {Vl}Ll=1 are read. The numbers

{zl}Ll=1 represent the contact impedances of the electrodes. The field σ represents

the conductivity of the body and v represents the potential within the body. It

should be noted that the solution of this PDE comprises both a potential v ∈ H1(D)

and a vector {Vl}Ll=1 of boundary voltage measurements.

The inverse problem we consider is the recovery of σ from a sequence of bound-

ary voltage measurements. A number of (linearly independent) current stimulation

patterns {Il}Ll=1 may be performed to provide more information; we assume that

we perform the maximum M = L − 1 measurements. Let Z = Lp(D) for some

1 ≤ p < ∞ and Y = RJ where J = LM . We can concatenate the boundary

voltage measurements arising from different stimulation patterns to yield a map

S : Z → Y ,

σ 7→ (V (1), V (2), . . . , V (M))

where V (m) = {V (m)
l }Ll=1 ∈ RL, m = 1, . . . ,M .

For the experiments we work on a circular domain D = {x ∈ R2 | |x| < 1}. 16

electrodes are spaced equally around the boundary providing 50% coverage. All

contact impedances are taken to be zl = 0.01. Adjacent electrodes are stimulated

with a current of 0.1, so that the matrix of stimulation patterns I = (I(j))15
j=1 ∈
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R16×15 is given by

I = 0.1×



+1 0 · · · 0

−1 +1 · · · 0

0 −1
. . . 0

...
...

. . . +1

0 0 0 −1


.

We define our forward map G : X ×R+ → RJ by G = S ◦F . As in the groundwater

flow example, assume that each κi in the definition of the level set map is strictly

positive. We do not have a continuity result for the map S on Lp for any 1 ≤ p <∞.

However the almost-sure continuity of the map G can be seen via a modification of

the proof of Proposition 3.5 in [45] to include the parameter τ ; this modification

is almost identical to the proof of Proposition 4.6.1 given in the appendix. The

uniform boundedness of G follows from a result in [45] similarly. Hence as was the

case with the identity map example, the conclusions of Proposition 4.6.1 follow, and

we can deduce the conclusions of Theorem 4.2.4.

Simulations and results

We fix a true conductivity σ†, shown in Figure 4.14. As with the groundwater

flow experiments, this is constructed explicitly and does not have a true value of τ

associated with it. We generate data y as

y = S(σ†) + η, η ∼ N(0,Γ)

where we take the noise covariance Γ = diag(0.00022). The mean relative error on

the generated data is approximately 12%. The data is generated using a mesh of

43264 elements and simulations are performed used a mesh of 10816 elements, in

order to avoid an inverse crime. All field samples are defined on the square [−1, 1]2

and restricted to the domain D. This has the advantage of allowing for efficient

sampling via the Fast Fourier Transform, though has the drawback of introducing

possibly non-trivial boundary effects on the domain; no such effects are observed in

our problem, however.

The level set map F is defined such that there are 2 phases, taking the constant

values 1 and 10. We take the prior field mean to be zero, so that in this case F (and

hence Φ) becomes independent of τ . Thus a forward model evaluation is not required

for the Gibbs update of τ , and each sample of (u, τ) using the hierarchical method
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costs virtually the same as one of u using the non-hierarchical method.

Similarly to the previous experiments, we initialize the hierarchical sampling from

τ = 10, 30, 50, 70, 90 to check for robustness of the method. We use a sharper prior

on τ than was used previously, π0 = N(10, 32), in order to reduce the length of

the burn-in period, given the expense of forward model evaluations. We fix the

smoothness parameter α = 5 in the prior for u. We again wish to compare how

the hierarchical method compares with the non-hierarchical method. We therefore

also look at the 5 different posterior distributions that arise when using each of 5

fixed prior inverse length scales τ = 10, 30, 50, 70, 90, which gives another 5 MCMC

chains. For both the methods we produce 4×106 samples for each chain, and discard

the first 2× 106 samples as burn-in when calculating quantities of interest.

The traces of the values of τ along the hierarchical chains are shown in Figure 4.13.

With the exception of the chain initialized at τ = 10, the chains converge to the

sample approximate value of τ . Unlike in previous experiments, the traces have

a relatively flat period before the approximate linear convergence to the common

length scale. Initializing τ = 90 requires an additional 106 samples to converge, over

the other converging chains.

Figure 4.14 shows the push forwards of the sample means from different chains under

the level set map, along with approximations of E(F (u, τ)) and typical samples of

F (u, τ) coming from the different posteriors. In both the hierarchical and non-

hierarchical methods, the chains initialized/fixed at τ = 10 fail to recover the true

conductivity, similarly to what was observed with the identity map experiments

when initialising at τ = 5. The other chains for the hierarchical method produce

very similar results to one another, whilst the effect of fixing the length scale to be

too short is apparent in the figures for the non-hierarchical method.

In Figure 4.15 we see approximations to Var(F (u, τ)) under the different posteriors.

In both cases, variance is highest around the boundaries of the two inclusions. The

difference between the hierarchical and non-hierarchical methods is more apparent

here, with higher variance between the two inclusions when the length scale is fixed

to be too short.

Again, we look at the level set function u itself in Figure 4.16. In these plots, as

before, we rescale the level set function by τα−d/2 = τ4 so that they are all of ap-

proximately the same amplitude. As in the previous experiments, there is noticeable

contrast between the means for the hierarchical and non-hierarchical methods, and

yet more contrast between the typical samples.
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Figure 4.13: (EIT model) The trace of τ along the MCMC chain, when initialized
at the 5 different values τ = 10, 30, 50, 70, 90.

Finally, in Figure 4.17, we show the posterior densities on the inverse length scale

and the first five KL modes, as well as correlations between them. As with the

grounwater flow example, although there is no “true” inverse length scale, the data

is sufficiently informative to define a small range of values for this parameter under

the posterior.

4.5 Conclusions

The level set method is an attractive approach to inverse problems for the detection

of interfaces. Furthermore the Bayesian approach is particularly desirable when

there is a need to quantify uncertainty. In this chapter we have shown that Bayesian

level set inversion is considerably enhanced by a hierarchical approach in which the

length scale of the underlying level set function is inferred from the data. We have

demonstrated this by means of three examples of interest arising in, respectively,

the information, physical and medical sciences; however many potential applications

remain to be explored and this provides an interesting avenue for future work.

We also developed the theoretical underpinnings for our hierarchical method. Our

work is based on a Metropolis-within-Gibbs approach which alternates between up-
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(a) (Left) True conductivity field used to generate the data y. (Right) The entries yi of the
data vector y, plotted against i.

(b) (Top) Representative samples of F (u, τ) under the hierarchical posterior. (Middle)
Approximations of F (E(u),E(τ)). (Bottom) Approximations of E(F (u, τ)). From left-to-
right, τ is initialized at τ = 10, 30, 50, 70, 90.

(c) As in (b), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
10, 30, 50, 70, 90.

Figure 4.14: Simulations for the groundwater flow model.
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Figure 4.15: (EIT model) Approximations of Var(F (u, τ)) using the hierarchical
(top) and fixed (bottom) priors, with τ initialized or fixed at τ = 10, 30, 50, 70, 90,
from left-to-right.

(a) (Top) Representative samples of the rescaled level-set function τ4 · u and (bottom)
approximations of E(τ4 ·u) using the hierarchical method. From left-to-right, τ is initialized
at τ = 10, 30, 50, 70, 90.

(b) As in (a), using the non-hierarchical method. From left-to-right, τ is fixed at τ =
10, 30, 50, 70, 90.

Figure 4.16: (EIT model) Representative samples and sample means of the level
set function. The rescaling τ4 means that the above quantities have the same
approximate amplitude. True inverse length scale is τ = 15.
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Figure 4.17: (EIT model) (diagonal) Empirical densities of τ and the first five KL
modes of u. (off-diagonal) Empirical joint densities.
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dating the level set function and the length-scale. The Metropolis method we use

for the field update does not use derivatives of the log-likelihood, and could be im-

proved by doing so, using the infinite dimensional variants on MALA and HMC

(which use first derivative information, see the citations in [34]) or the manifold

MALA and HMC methods, which use higher order derivatives [56]. Another in-

teresting direction for future work is the design of methods with more informed

proposals which exploit correlations in the level set function and its length-scale.

And finally it would be interesting to consider pseudo-marginal methods to sample

the hierarchical parameter alone, as in [49].

Finally we mention that the use of a single length-scale within an isotropic prior

is a simple example of more sophisticated hierarchical approaches which attempt

to learn non-stationary and non-isotropic [24, 25] features of the level set function

from the data. This provides an interesting opportunity for future work and for

ideas from machine learning to play a role in the solution of inverse problems for

interfaces.

4.6 Appendix

4.6.1 Proof of Theorems

Proof of Theorem 4.2.1. (i) Note that it suffices to show that µτ0 ∼ µ0
0 for all

τ > 0. (Here ∼ denotes “equivalent as measures”). It is known that the

eigenvalues of −∆ on Td grow like j2/d, and hence the eigenvalues λj(τ) of

Cα,τ decay like

λj(τ) � (τ2 + j2/d)−α, j ≥ 1.

Using Proposition 4.6.3, we see that µτ0 ∼ µ0
0 if

∞∑
j=1

(
λj(τ)

λj(0)
− 1

)2

<∞.
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Now we have ∣∣∣∣λj(τ)

λj(0)
− 1

∣∣∣∣ �
∣∣∣∣∣
(

1 +
τ2

j2/d

)−α
− 1

∣∣∣∣∣
≤
∣∣∣∣exp

(
ατ2

j2/d

)
− 1

∣∣∣∣
≤ C ατ

2

j2/d
.

Here we have used that (1 + x)−α − 1 ≤ exp(αx) − 1 for all x ≥ 0 to move

from the first to the second line, and that exp(x) − 1 ≤ Cx for all x ∈ [0, x0]

to move from the second to third line. Now note that when d ≤ 3, j−4/d is

summable, and so it follows that µτ0 ∼ µ0
0.

(ii) The case τ = 0 is Theorem 2.18 in [39]; the general result follows from the

equivalence above.

(iii) Let v ∼ N(m,Dν,`) where Dν,` is as given by (4.2.2). These samples satisfy

E‖v −m‖2 = σ2 independent of `. Now note that we have

Dν,` = β`d(I − `2∆)−ν−d/2

= β`d`−2ν−d(`−2I −∆)−ν−d/2

= βτ2α−d(τ2I −∆)−α

= βτ2α−dCα,τ .

and so letting u ∼ N(m, Cα,τ ), we see that

E‖u−m‖2 = tr(Cα,τ ) =
σ2

β
τd−2α

Proof of Theorem 4.2.4. Proposition 4.6.1 which follows shows that µ0 and Φ satisfy

Assumptions 2.1 in [72], with U = X × R+. Theorem 2.2 in [72] then tells us that

the posterior exists and is Lipschitz with respect to the data.

Proposition 4.6.1. Let µ0 be given by (4.2.3) and Φ : X × R+ → R be given by

(4.2.9). Let Assumptions 4.2.3 hold. Then

(i) for every r > 0 there is a K = K(r) such that, for all (u, τ) ∈ X ×R+ and all
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y ∈ Y with |y|Γ < r,

0 ≤ Φ(u, τ ; y) ≤ K;

(ii) for any fixed y ∈ Y , Φ(·, ·; y) : X ×R+ → R is continuous µ0-almost surely on

the complete probability space (X × R+,X ⊗R, µ0);

(iii) for y1, y2 ∈ Y with max{|y1|Γ, |y2|Γ} < r, there exists a C = C(r) such that

for all (u, τ) ∈ X × R+,

|Φ(u, τ ; y1)− Φ(u, τ ; y2)| ≤ C|y1 − y2|Γ.

Proof. (i) Recall the level set map F defined by (4.2.6) defined via the finite

constant values κi taken on each subset Di of D. We may bound F uniformly:

|F (u, τ)| ≤ max{|κ1|, . . . |κn|} =: Fmax

for all (u, τ) ∈ X × R+. Combining this with Assumption 4.2.3(ii) it follows

that G is uniformly bounded on X × R+. The result then follows from the

continuity of y 7→ 1
2 |y − G(u, τ)|2Γ.

(ii) This holds, with very little additional work, in the more general case where

the prior mean m0 has continuous spatial dependence; we prove it in this case

which may be of independent interest. Note that this means that the rescaled

levels ci(τ) will also gain a spatial dependence and so we write ci(τ) = ci(τ, x).

Let (u, τ) ∈ X × R+ and let Di(u, τ) be as defined by (4.2.5), and define

D0
i (u, τ) by

D0
i (u, τ) = Di(u, τ) ∩Di+1(u, τ)

= {x ∈ D |u(x) = ci(τ, x)}, i = 1, . . . , n− 1.

We first show that G is continuous at (u, τ) whenever |D0
i (u, τ)| = 0 for i =

1, . . . , n− 1.

Choose an approximating sequence (uε, τε)ε>0 of (u, τ) such that ‖uε− u‖∞+

|τε−τ | < ε for all ε > 0. We will first show that ‖F (uε, τε)−F (u, τ)‖Lp(D) → 0
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for any p ∈ [1,∞). As in [72] Proposition 2.4, we can write

F (uε, τε)− F (u, τ) =

n∑
i=1

n∑
j=1

(κi − κj)1Di(uε,τε)∩Dj(u,τ)

=

n∑
i,j=1
i 6=j

(κi − κj)1Di(uε,τε)∩Dj(u,τ).

From the definition of (uε, τε),

u(x)− ε < uε(x) < u(x) + ε, τ − ε < τε < τ + ε

for all x ∈ D and ε > 0. Hence for |i − j| > 1 and ε sufficiently small,

Di(uε, τε)∩Di(u, τ) = ∅. We hence look at the cases |i− j| = 1. We have that

Di(uε, τε) =
{
x ∈ D

∣∣ m0(x) + τd/2−αε

(
ci−1 −m0(x)

)
≤ uε(x) ≤ m0(x) + τd/2−αε

(
ci −m0(x)

)}
=
{
x ∈ D

∣∣ ci−1 ≤ m0(x) + τα−d/2ε

(
uε(x)−m0(x)

)
< ci

}
.

For small ε we may approximate

(τ ± ε)α−d/2 = τα−d/2 ± ε(α− d/2)τα−d/2−1 +O(ε2)

and so, since α− d/2 > 0,

τα−d/2ε

(
uε(x)−m0(x)

)
< (τ + ε)α−d/2

(
u(x)−m0(x) + ε

)
= τα−d/2

(
u(x)−m0(x)

)
+ ε
(
τα−d/2 +

(
u(x)−m0(x)

)
(α− d/2)τα−d/2−1

)
+O(ε2)

≤ τα−d/2
(
u(x)−m0(x)

)
+ εγ +O(ε2).

The above γ ∈ R exists since u and m0 are bounded. Similarly we may obtain

the lower bound

τα−d/2ε

(
uε(x)−m0(x)

)
> τα−d/2

(
u(x)−m0(x)

)
− εγ +O(ε2).
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We therefore have that, for small ε,

Di(uε,τε) ⊆
{
x ∈ D

∣∣ ci−1 − γε+O(ε2)

< m0(x) + τα−d/2
(
u(x)−m0(x)

)
< ci + εγ +O(ε2)

}
from which it follows that

Di(uε, τε) ∩Di+1(u, τ) ⊆
{
x ∈ D

∣∣ ci ≤ m0(x) + τα−d/2
(
u(x)−m0(x)

)
< ci + εγ +O(ε2)

}
→
{
x ∈ D

∣∣ m0(x) + τα−d/2
(
u(x)−m0(x)

)
= ci

}
=
{
x ∈ D

∣∣ u(x) = m0(x) + τd/2−α
(
ci −m0(x)

)}
= D0

i (u, τ)

and also

Di(uε, τε) ∩Di−1(u, τ) ⊆
{
x ∈ D

∣∣ ci−1 − εγ +O(ε2)

< m0(x) + τα−d/2
(
u(x)−m0(x)

)
< ci−1

}
→ ∅.

Assume that each |D0
i (u, τ)| = 0, then it follows that |Di(uε, τε)∩Dj(u, τ)| → 0

whenever i 6= j. Therefore we have that

‖F (uε, τε)− F (u, τ)‖pLp(D) =

n∑
i,j=1
i 6=j

∫
Di(uε,τε)∩Dj(u,τ)

|κi − κj |p dx

≤ (2Fmax)p
n∑

i,j=1
i 6=j

|Di(uε, τε) ∩Dj(u, τ)|

→ 0.

Thus F is continuous at (u, τ). By Assumption 4.2.3(i) it follows that G is

continuous at (u, τ).

We now claim that |D0
i (u, τ)| = 0 µ0-almost surely for each i. By Tonelli’s
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theorem, we have that

E|D0
i (u, τ)| =

∫
X×R+

|D0
i (u, τ)|µ0(du,dτ)

=

∫
X×R+

(∫
R
1D0

i (u,τ)(x) dx

)
µ0(du,dτ)

=

∫
Rd

(∫
X×R+

1D0
i (u,τ)(x)µ0(du,dτ)

)
dx

=

∫
Rd

(∫ ∞
0

(∫
X
1D0

i (u,τ)(x)µτ0(du)

)
π0(dτ)

)
dx

=

∫
Rd

(∫ ∞
0

µτ0({u ∈ X | u(x) = ci(τ, x)})π0(dτ)

)
dx.

For each τ ≥ 0 and x ∈ D, u(x) is a real-valued Gaussian random vari-

able under µτ0 . It follows that µτ0({u ∈ X | u(x) = ci(τ, x)}) = 0, and so

E|D0
i (u, τ)| = 0. Since |D0

i (u, τ)| ≥ 0 we have that |D0
i (u, τ)| = 0 µ0-almost

surely. The result now follows.

(iii) For fixed (u, τ) ∈ X × R+, the map y 7→ 1
2 |y − G(u, τ)|2Γ is smooth and hence

locally Lipschitz.

Proof of Theorem 4.3.3. Recall that the eigenvalues of Cα,τ satisfy λj(τ) � (τ2 +

j2/d)−α. Then we have that(
λj(0)

λj(τ)
− 1

)
� (1 + τ2j−2/d)α − 1 = O(j−2/d).

It follows that

∞∑
j=1

(
λj(0)

λj(τ)
− 1

)p
<∞ if and only if d < 2p. (4.6.1)

(i) We first prove the ‘if’ part of the statement. We have u ∼ N(m0, C0), and so

E〈u−m0, ϕj〉2 = λj(0). Since the terms within the sum are non-negative, by

Tonelli’s theorem we can bring the expectation inside the sum to see that that

E
∞∑
j=1

(
1

λj(τ)
− 1

λj(0)

)
〈u−m0, ϕj〉2 =

∞∑
j=1

(
λj(0)

λj(τ)
− 1

)

which is finite if and only if d < 2, i.e. d = 1. It follows that the sum is finite

158



almost surely.

For the converse, suppose that d ≥ 2 so that the series in (4.6.1) diverges

when p = 1. Let {ξj}j≥1 be a sequence of i.i.d. N(0, 1) random variables so

that 〈u −m0, ϕj〉2 has the same distribution as λj(0)ξ2. Define the sequence

{Zn}n≥1 by

Zn =

n∑
j=1

(
λj(0)

λj(τ)
− 1

)
ξ2
j

=

n∑
j=1

(
λj(0)

λj(τ)
− 1

)
+

n∑
j=1

(
λj(0)

λj(τ)
− 1

)
(ξ2
j − 1)

=: Xn + Yn.

Then the result follows if Zn diverges with positive probability. By assumption

we have that Xn diverges. In order to show that Zn diverges with positive

probability it hence suffices to show that Yn converges with positive probability.

Define the sequence of random variables {Wj}j≥1 by

Wj =

(
λj(0)

λj(τ)
− 1

)
(ξ2
j − 1).

It can be checked that

E(Wj) = 0, Var(Wj) = 2

(
λj(0)

λj(τ)
− 1

)2

.

The series of variances converges if and only if d ≤ 3, using (4.6.1) with p = 2.

We use Kolmogorov’s two series theorem, Theorem 3.11 in [137], to conclude

that Yn =
∑n

j=1Wj converges almost surely and the result follows.

(ii) Now we have

log

(
λj(τ)

λj(0)

)
= − log

(
1−

(
1− λj(0)

λj(τ)

))
=

(
1− λj(0)

λj(τ)

)
+

1

2

(
1− λj(0)

λj(τ)

)2

+ h.o.t.

Let {ξj}j≥1 be a sequence of i.i.d. N(0, 1) random variables, so that again

we have that 〈u − m0, ϕj〉2 has the same distribution as λj(0)ξ2. Then it is
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sufficient to show that the series

I =
∞∑
j=1

[(
λj(0)

λj(τ)
− 1

)
ξ2
j + log

(
λj(τ)

λj(0)

)]

is finite almost surely. We use the above approximation for the logarithm to

write

I =
∞∑
j=1

(
λj(0)

λj(τ)
− 1

)
(ξ2
j − 1) +

∞∑
j=1

[
1

2

(
1− λj(0)

λj(τ)

)2

+ h.o.t.

]
.

The second sum converges if and only if d < 4, i.e. d ≤ 3. The almost sure

convergence of the first term is shown in the proof of part (i).

Proposition 4.6.2. Let D ⊆ Rd. Define the construction map F : X × R+ →
RD by (4.2.6). Given x0 ∈ D define G : X × R+ → R by G(u, τ) = F (u, τ)|x0.

Then G is continuous at any (u, τ) ∈ X × R+ with u(x0) 6= ci(τ) for each i =

0, . . . , n. In particular, G is continuous µ0-almost surely when µ0 is given by (4.2.3).

Additionally, G is uniformly bounded.

Proof. The uniform boundedness is clear. For the continuity, let (u, τ) ∈ X × R+

with u(x0) 6= ci(τ) for each i = 0, . . . , n. Then there exists a unique j such that

cj−1(τ) < u(x0) < cj(τ). (4.6.2)

Given δ > 0, let (uδ, τδ) ∈ X × R+ be any pair such that

‖uδ − u‖∞ + |τδ − τ | < δ.

Then it is sufficient to show that for all δ sufficiently small, x0 ∈ Dj(uδ, τδ), i.e. that

cj−1(τδ) ≤ uδ(x0) < cj(τδ).

From this it follows that G(uδ, τδ) = G(u, τ).

Since the inequalities in (4.6.2) are strict, we can find α > 0 such that

cj−1 + α < u(x0) < cj(τ)− α. (4.6.3)

Now cj is continuous at τ > 0, and so there exists a γ > 0 such that for any λ > 0
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with |λ− τ | < γ we have

cj(λ)− α/2 < cj(τ) < cj(λ) + α/2. (4.6.4)

We have that ‖uδ − u‖∞ < δ, and so in particular,

u(x0)− δ < uδ(x0) < u(x0) + δ. (4.6.5)

We can combine (4.6.3)-(4.6.5) to see that, for δ < γ,

cj−1(τδ)− δ + α/2 < uδ(x0) < cj(τδ) + δ − α/2

and so in particular, for δ < min{γ, α/2},

cj−1(τδ) < uδ(x0) < cj(τδ).

4.6.2 Radon-Nikodym Derivatives in Hilbert Spaces

The following proposition gives an explicit formula for the density of one Gaussian

with respect to another and is used in defining the acceptance probability for the

length-scale updates in our algorithm. Although we only use the proposition in the

case where H is a function space and the mean m is constant, we provide a proof in

the more general case where m is an arbitrary element of a separable Hilbert space

H as this setting may be of independent interest.

Proposition 4.6.3. Let (H, 〈·, ·〉, ‖ · ‖) be a separable Hilbert space, and let A,B be

positive trace-class operators on H. Assume that A and B share a common com-

plete set of orthonormal eigenvectors (ϕj)j≥1, with the eigenvalues (λj)j≥1, (γj)j≥1

defined by

Aϕj = λjϕj , Bϕj = γjϕj

for all j ≥ 1. Assume further that the eigenvalues satisfy

∞∑
j=1

(
λj
γj
− 1

)2

<∞.

Let m ∈ H and define the measures µ = N(m,A) and ν = N(m,B). Then µ and ν
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are equivalent, and their Radon-Nikodym derivative is given by

dµ

dν
(u) =

∞∏
j=1

γj
λj
· exp

(
1

2

∞∑
j=1

(
1

γj
− 1

λj

)
〈u−m,ϕj〉2

)
.

Proof. The assumption on summability of the eigenvalues means that the Feldman-

Hájek theorem applies, and so we know that µ and ν are equivalent. We show that

the Radon-Nikodym derivative is as given above.

Define the product measures µ̂, ν̂ on R∞ by

µ̂ =
∞∏
j=1

µ̂j , ν̂ =
∞∏
j=1

ν̂j

where µ̂j = N(0, λj), ν̂j = N(0, γj). As a consequence of a result of Kakutani,

see [35] Proposition 1.3.5, we have that µ̂ ∼ ν̂ with

dµ̂

dν̂
(x) =

∞∏
j=1

dµ̂j
dν̂j

(xj)

=
∞∏
j=1

γj
λj
· exp

(
1

2

∞∑
j=1

(
1

γj
− 1

λj

)
x2
j

)
.

We associate H with R∞ via the map G : H → R∞, given by

Gju = 〈u, ϕj〉, j ≥ 1.

Note that the image of G is `2 ⊆ R∞, and G : H → `2 is an isomorphism. Since A

and B are trace-class, samples from µ̂ and ν̂ almost surely take values in `2. G−1 is

hence almost surely defined on samples from µ̂ and ν̂. Define the translation map

Tm : H → H by Tmu = u+m. Then by the Karhunen-Loève theorem, the measures

µ and ν can be expressed as the push-forwards

µ = T#
m (G−1)#µ̂, ν = T#

m (G−1)#ν̂.
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Now let f : H → R be bounded measurable, then we have∫
H
f(u)µ(du) =

∫
H
f(u)

[
T#
m (G−1)#µ̂

]
(du)

=

∫
R∞

f(G−1x+m) µ̂(dx)

=

∫
R∞

f(G−1x+m)
dµ̂

dν̂
(x) ν̂(dx)

=

∫
H
f(u)

dµ̂

dν̂
(G(u−m))

[
T#
m (G−1)#ν̂

]
(du)

=

∫
H
f(u)

dµ̂

dν̂
(G(u−m)) ν(du).

From this is follows that we have

dµ

dν
(u) =

dµ̂

dν̂
(G(u−m))

=
∞∏
j=1

γj
λj
· exp

(
1

2

∞∑
j=1

(
1

γj
− 1

λj

)
〈u−m,ϕj〉2

)
.

Remark 4.6.4. The proposition above, in the case m = 0, is given as Theorem

1.3.7 in [35] except that, there, the factor before the exponential is omitted. This is

because it does not depend on u, and all measures involved are probability measures

and hence normalized. We retain the factor as we are interested in the precise

value of the derivative for the MCMC algorithm; in particular its dependence on the

length-scale.
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Appendix A

Background and

Preliminaries

A.1 Measure Theory

In this section we overview the notations and results in measure theory that are rel-

evant to this thesis. We then define general Gaussian measures, and their relevant

properties.

A.1.1 General Measure Theory

The definitions and results in this subsection can be found in any standard book on

measure theory or measure theoretic probability, for example [17].

Definition A.1.1 (σ-algebra). Let X be a set and X a collection of subsets of X.

X is called a σ-algebra on X if

(i) ∅ ∈ X ;

(ii) for all A ∈ X , X \A ∈ X ; and

(iii) for all countable subcollections {An}n∈N ⊂ X ,
⋃
n∈NAn ∈ X .

Definition A.1.2 (Borel σ-algebra). If X is a topological space, then the smallest

σ-algebra containing all open sets is called the Borel σ-algebra. It is denoted B(X).
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Remark A.1.3. If no σ-algebra is explicitly specified on a space, it is assumed to

be equipped with its Borel σ-algebra.

Definition A.1.4 (Measurable space). An ordered pair (X,X ) of a set X and a

σ-algebra X on X is called a measurable space.

Definition A.1.5 (Measure). Let (X,X ) be a measurable space. A function µ :

X → [0,∞] is called a measure on (X,X ) if

(i) µ(∅) = 0; and

(ii) for all countable subcollections {An}n∈N ⊂ X of pairwise disjoint sets,

µ

(⋃
n∈N

An

)
=
∞∑
k=1

µ(An).

Definition A.1.6 (Probability measure). A measure µ on a measurable space

(X,X ) is called a probability measure if µ(X) = 1.

Definition A.1.7 (Measurable function, random variable). Let (X,X , µ) be a mea-

sure space and (Y,Y) be a measurable space. A function f : X → Y is called

measurable if f−1(A) ∈ X for all A ∈ Y. If µ is a probability measure then f is

called a (Y -valued) random variable.

Definition A.1.8. Let (X,X , µ) be a measure space, and let A ∈ X . The indicator

function of A is the measurable function 1A : X → R defined by

1A(u) =

1 u ∈ A
0 u /∈ A

.

Definition A.1.9 (Integration, integrability). Let (X,X , µ) be a measure space.

(i) Let A ∈ X . The integral of 1A with respect to µ is defined by∫
X
1A(u)µ(du) := µ(A).

This definition extends linearly to linear combinations of indicator functions,

referred to as simple functions.

(ii) Let f : X → [0,∞) be measurable. Then there exists an increasing sequence

of simple functions {fn}n∈N with fn → f pointwise. The integral of f with
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respect to µ is defined by∫
X
f(u)µ(du) := lim

n→∞

∫
X
fn(u)µ(du).

This limit can be shown to exist in [0,∞] and to be independent of the choice

of approximating sequence {fn}n∈N.

(iii) Let f : X → R be measurable. Then there exist measurable f+, f− : X → [0,∞)

with f = f+ − f−. The integral of f with respect to µ is defined by∫
X
f(u)µ(du) :=

∫
X
f+(u)µ(du)−

∫
X
f−(u)µ(du)

whenever at least one of the integrals on the right hand side is finite.

A measurable function for which the integral exists and is finite is called integrable.

In the above definition (ii) we asserted that the limit existed and was independent

of the choice of increasing sequence; this is a special case of what is called the mono-

tone convergence theorem. A related result, used in this thesis, is the dominated

convergence theorem:

Theorem A.1.10 (Dominated convergence theorem). Let (X,X , µ) be a measure

space. Let {fn}n∈N be a sequence of real valued measurable functions on (X,X , µ)

such that {fn}n∈N converges pointwise to a function f . Suppose that there exists

a real valued integrable function g on (X,X , µ) such that |fn(u)| ≤ Cg(u) for all

n ∈ N and all x ∈ X. Then f is integrable, and∫
X
fn(u)µ(du)→

∫
X
f(u)µ(du).

Absolute continuity of measures plays a key role throughout the thesis. It is defined

as follows.

Definition A.1.11. Let (X,X ) be a measurable space and let µ, ν be two measures

on (X,X ). ν is said to be absolutely continuous with respect to µ, denoted ν � µ, if

µ(A) = 0 implies that ν(A) = 0. µ and ν are said to be equivalent, denoted µ ∼ ν,

if ν � µ and µ� ν.

Theorem A.1.12 (Radon-Nikodym). Let (X,X ) be measurable space and let µ, ν

be two probability measures on X such that ν � µ. Then there exists an integrable
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function f : X → [0,∞) such that for any A ∈ X ,

ν(A) =

∫
A
f(u)µ(du). (A.1.1)

The function f is called the Radon-Nikodym derivative of µ with respect to ν, and

denoted dµ
dν .

Remark A.1.13. The relation (A.1.1) is often written as µ(du) = f(u)µ(du).

The notion of absolute continuity allows for the definition of certain metrics on the

space of probability measures on X [39]. Note first that if µ, µ′ are two probability

measures, then there exists a probability measure ν such that µ, µ′ � ν, for example

ν = 1
2(µ+ µ′).

Definition A.1.14 (Total variation metric). Let µ, µ′ be two probability measures

absolutely continuous with respect to a probability measure ν. The total variation

distance between µ and µ′ is defined as

dTV(µ, µ′) =
1

2

∫
X

∣∣∣∣dµdν
(u)− dµ′

dν
(u)

∣∣∣∣ ν(du).

In particular, if µ′ is absolutely continuous with respect to µ, then

dTV(µ, µ′) =
1

2

∫
X

∣∣∣∣1− dµ′

dµ
(u)

∣∣∣∣ µ(du).

Definition A.1.15 (Hellinger metric). Let µ, µ′ be two probability measures abso-

lutely continuous with respect to a probability measure ν. The Hellinger distance

between µ and µ′ is defined as

dHell(µ, µ
′) =

√√√√1

2

∫
X

∣∣∣∣∣
√

dµ

dν
(u)−

√
dµ′

dν
(u)

∣∣∣∣∣
2

ν(du).

In particular, if µ′ is absolutely continuous with respect to µ, then

dHell(µ, µ
′) =

√√√√1

2

∫
X

∣∣∣∣∣1−
√

dµ′

dµ
(u)

∣∣∣∣∣
2

µ(du).

The following definition is central to the definition of Gaussian measures in the next

subsection; given a measure on a space X and a map T : X → Y , it allows for the

construction of a particular measure on Y .

167



Definition A.1.16 (Pushforward measure). Let (X,X ) and (Y,Y) be measurable

spaces, and let T : (X,X ) → (Y,Y) be a measurable map. Let µ be a measure on

(X,X ). Then the pushforward of µ by T is the measure T#µ on (Y,Y) given by

T#µ(A) = µ(T−1(A))

for each A ∈ Y.

Definition A.1.17 (Law of a random variable). Let (X,X , µ) be a probability space

and (Y,Y) a measurable space. The law of a random variable f : X → Y is the

probability measure on (Y,Y) defined by the pushforward f#(µ).

A.1.2 Gaussian Measure Theory

We provide a brief overview of the definitions and result associated with Gaussian

measures used in this thesis. More detailed expositions can be found in, for example,

[18, 61].

Definition A.1.18 (Gaussian measure on R). A Borel measure µ on R is called a

non-degenerate Gaussian measure if there exists m ∈ R and σ2 > 0 such that

dµ

dλ
(x) =

1√
2πσ2

exp

(
− 1

2σ2
(x−m)2

)
where λ denotes the Lebesgue measure on R. It is called a degenerate Gaussian

measure if there exists m ∈ R such that µ = δm.

Definition A.1.19 (Dual space). Let (X, ‖ · ‖) be a Banach space. The dual space

of X, denoted X∗, is the set of all continuous linear functionals ` : X → R. It is

itself a Banach space, equipped with the norm

‖`‖X∗ := sup
‖u‖X=1

|`(u)|.

Definition A.1.20 (Gaussian measure on Banach space). Let X be a separable

Banach space and µ be a Borel measure on X. Then µ is said to be a (non-

degenerate) Gaussian measure if `#µ is a (non-degenerate) Gaussian measure on R
for all ` ∈ X∗. It is said to be centered if `#µ has mean zero for all ` ∈ X∗.

Definition A.1.21 (Covariance operator). Let µ be a centered Gaussian measure
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on a separable Banach space X. The operator Cµ : X∗ ×X∗ → R defined by

Cµ(`, `′) =

∫
X
`(u)`′(u)µ(du)

is called the covariance operator of µ. If X is Hilbert, then after identification of X

with its dual space, we have

Cµ =

∫
X

(u⊗ u)µ(du).

The covariance of a centered Gaussian measure completely determines it. We hence

often write µ = N(0, Cµ), since this defines a unique Gaussian measure.

Associated with each Gaussian measure µ on X is a Hilbert subspace Hµ ⊂ X called

the Cameron-Martin space:

Definition A.1.22 (Cameron-Martin space). Let µ be a centered Gaussian measure

on a separable Banach space X. The Cameron-Martin space Hµ ⊂ X of µ is defined

as the closure of the space

H̊µ = {h ∈ X | ∃h∗ ∈ X∗ with Cµ(h∗, `) = `(h) ∀` ∈ X∗}

under the inner product 〈h1, h2〉µ = Cµ(h∗1, h
∗
2).

Remark A.1.23. If (X, ‖ · ‖) is Hilbert, then Hµ is the space C
1/2
µ X equipped with

the inner product 〈h1, h2〉µ = 〈C−1/2
µ h1, C

−1/2
µ h2〉.

The space is important since it contains precisely the set of elements under which

translation gives an equivalent Gaussian measure. In what follows we will write ‖·‖µ
for the norm arising from the inner product 〈·, ·〉µ.

Theorem A.1.24 (Cameron-Martin). For h ∈ X defined the map Th : X → X by

Th(u) = u+ h. Then the measure T#
h µ is absolutely continuous with respect to µ if

and only if h ∈ Hµ. In this case, we have

d(T#
h µ)

dµ
(u) = exp

(
h∗(u)− 1

2
‖h‖2µ

)
.

Two important properties of the Cameron-Martin space Hµ are that µ(Hµ) = 0 and

Hµ is dense in X. This means, for example, that ‖u‖µ = ∞ µ-almost surely. This

is significant when defining sampling algorithms or MAP estimation for measures

associated with µ.
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We conclude this overview of Gaussian measures by stating the following proposition,

given as an exercise in [61].

Proposition A.1.25. Let µ be a measure on a Banach space X. Suppose X̃ ⊂ X

is a continuously embedded Banach space with µ(X̃) = 1. Then the restriction of µ

to X̃ is again a Gaussian measure.

This proposition can be extremely useful, since Gaussian measures on Hilbert spaces

are typically easier to analyze than those on Banach spaces. Thus if we have a

Gaussian measure on a Hilbert space X and can show that there exists a Banach

subspace X̃ continuously embedded in X with µ(X̃) = 1, then properties of the

restriction to X̃ can be more easily deduced.

A.2 Markov Chain Monte Carlo

In this section we outline Markov Chain Monte Carlo techniques for sampling prob-

ability measures. The book [109] provides a background on the theory of Markov

chains.

Definition A.2.1 (Markov chain). Let (X,X ,P) be a probability space. Let {un}n∈N
be a sequence of random variables on X. {un}n∈N is said to be a Markov chain on

X if, for each n ∈ N,

P(un+1 ∈ · |u1, . . . , un) = P(un+1 ∈ · |un).

Definition A.2.2 (Transition kernel). Let {un}n∈N be a Markov chain on a proba-

bility space (X,X ,P). A function P : X × X → [0, 1] is called the transition kernel

for {un}n∈N if

(i) u 7→ P (u,A) is measurable for each A ∈ X ;

(ii) P (u, ·) is a probability measure for each u ∈ X; and

(iii) P(un+1 ∈ A |un = u) = P (u,A) for each u ∈ X, A ∈ X and n ∈ N.

Remark A.2.3. When such a transition kernel exists the Markov chain is said to

be time-homogeneous, since the transition probabilities do not depend on the time n.

In this appendix we consider only time-homogeneous Markov chains.

Definition A.2.4 (Invariant distribution). Let {un}n∈N be a Markov chain on a

probability space (X,X ,P) with transition kernel P . P (or {un}n∈N) is said to be
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invariant with respect to a probability measure µ on X if it satisfies

µ(A) =

∫
X
µ(dv)P (v,A) for all A ∈ X .

Definition A.2.5 (Reversible Markov chain). Let {un}n∈N be a Markov chain on

a probability space (X,X ,P) with transition kernel P . P (or {un}n∈N) is said to

be reversible with respect to a probability measure µ on X if it satisfies the detailed

balance equation:

µ(du)P (u,dv) = µ(dv)P (v,du).

Remark A.2.6. Note that if P is reversible with respect to µ, then it is invariant

with respect to µ.

The idea of Markov Chain Monte Carlo (MCMC) is to, given a probability distri-

bution µ on X, construct a Markov chain with transition kernel P such that µ is

reversible with respect to P . The Markov chain corresponding to P can then be

simulated numerically in order to produce a sequence of (correlated) samples from

µ. If µ admits a Lebesgue density, then a standard construction of such a Markov

chain is given by the Metropolis-Hastings algorithm:

Proposition A.2.7 (Metropolis-Hastings). Let µ be a measure on Rd with Lebesgue

density π. Let Q(u,dv) = q(u, v)dv be a probability distribution which proposes a

new state given a state u. Construct a Markov chain {uk}n∈N on Rd as follows:

1. Set n = 0. Choose an initial state u0 ∈ Rd.

2. Propose vn ∼ Q(un,dv).

3. Set un+1 = vn with probability

α(un, vn) = min

{
1,
π(vn)q(vn, un)

π(un)q(un, vn)

}
.

independently of (un, vn).

4. Set un+1 = un otherwise.

5. Set n→ n+ 1 and go to 2.

Then {un}n∈N is invariant with respect to µ.

A typical example for the proposal kernel Q(u,dv) is the Gaussian random walk

proposal, given by Q(u, ·) = N(u, ε2C) for some covariance matrix C and scalar

jump parameter ε > 0.
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Often it is advantageous to partition the state space into Rd = Rd1×Rd2 . Then given

a state (u1, u2) ∈ Rd1 × Rd2 , we can alternate updates that target the distributions

of the the random variables u1|u2 and u2|u1. These are referred to as Metropolis-

within-Gibbs methods [134].

Above we had to assume the existence of a Lebesgue density, though this will not

be possible when the state space is infinite dimensional since there does not exist an

infinite dimensional Lebesgue measure. Metropolis methods may however be gener-

alized to these cases, as described in [135]. One particular MCMC method defined

on function space is the preconditioned Crank-Nicolson method [34,62]:

Proposition A.2.8 (pCN Method). Let X be a Hilbert space, and let µ be a measure

on X given by
dµ

dµ0
(u) ∝ exp(−Φ(u))

where µ0 = N(0, C) is Gaussian. Let β ∈ (0, 1] be a scalar jump parameter. Con-

struct a Markov chain {uk}n∈N on X as follows:

1. Set n = 0. Choose an initial state u0 ∈ X.

2. Propose vn = (1− β2)1/2un + βξn, ξn ∼ N(0, C).

3. Set un+1 = vn with probability

α(un, vn) = min {1, exp(Φ(un)− Φ(vn))} .

independently of (un, vn).

4. Set un+1 = un otherwise.

5. Set n→ n+ 1 and go to 2.

Then {un}n∈N is invariant with respect to µ.
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